首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
设n元线性方程组Ax=b,其中 (1)证明行列式|A|=(n+1)an. (2)当a为何值时,该方程组有唯一解?求x1. (3)当a为何值时,该方程组有无穷多解?求通解.
admin
2020-09-25
216
问题
设n元线性方程组Ax=b,其中
(1)证明行列式|A|=(n+1)a
n
.
(2)当a为何值时,该方程组有唯一解?求x
1
.
(3)当a为何值时,该方程组有无穷多解?求通解.
选项
答案
(1)记D
n
=|A|.用数学归纳法证明D
n
=(n+1)a
n
. ①当n=1时,D
1
=2a,结论成立. ②当n=2时,D
2
=[*]=3a
2
,结论成立. 假设结论对小于n的情况成立,将D
n
按第一行展开,得 [*] 根据假设D
n-1
=na
n-1
,D
n-2
=(n一1)a
n-2
,可得 D
n
=2a.na
n-1
一a
2
(n一1)a
n-2
=(n+1)a
n
.所以结论对任意n成立. (2)当a≠0时,系数行列式D
n
=|A|≠0,方程组有唯一解,由克拉默法则,将D
n
第一列换成常数列b,得 [*] (3)当a=0时,方程组为[*] 由于[*]=R(A)=n一1<n,所以方程组有无穷多解,其通解为(0,1,0,…,0)
T
+k(1,0,0,…,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qWx4777K
0
考研数学三
相关试题推荐
方程组有非零解,则k=________。
设α=(1,-1,a)T是A=的伴随矩阵A*的特征向量,其中r(A*)=3,则a=__________
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
若绝对收敛,条件收敛,则()
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
(96年)设某种商品的单价为p时,售出的商品数量Q可以表示成Q=-c.其中a、b、c均为正数,且a>bc.(1)求P在何范围变化时,使相应销售额增加或减少;(2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求级数的和.
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x.求出F(x)的表达式.
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
随机试题
A.呼吸道传染病B.肠道传染病C.自然疫源性疾病D.性传播疾病E.烈性传染病
下述哪项不是经行发热的病因病机
阑尾发生炎症时阑尾容易坏死的解剖因素是
企业在对会计要素进行计量时,一般应当采用( )。
流通过程的商业交易与物流的分离是由于()造成的。
小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)。记甲立方体朝上一面上的数字为x、乙立方体朝上一面朝上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为()。
高中生钱某于1980年9月2日出生。1998年6月1日钱某在校将同学李某打伤,致其花去医药费2000元。钱某毕业后进入一家炼钢厂工作。1999年2月,李某起诉要求钱某赔偿医药费。该民事责任应由谁承担?()
在窗体上画一个命令按钮(名称为Commandl),并编写如下代码:FunctionFunl(ByValaAsInteger,bAsInteger)AsIntegerDimtAsIntegert=a.b:b=t+
Recentlyscientistshavebeen【1】andperfectingothersourcesofenergy:nuclearoratomicpower,solar(sun)power,andsyntheti
A、Theydon’tenjoyswimming.B、Theywon’tgoswimminginthelaketoday.C、Theydon’tknowhowtoswim.D、They’llswiminthela
最新回复
(
0
)