首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn(n≥2). 证明方程fn(x)=1有唯一的正根xn;
设fn(x)=x+x2+…+xn(n≥2). 证明方程fn(x)=1有唯一的正根xn;
admin
2018-08-12
57
问题
设f
n
(x)=x+x
2
+…+x
n
(n≥2).
证明方程f
n
(x)=1有唯一的正根x
n
;
选项
答案
令φ
n
(x)=f
n
(x)-1,因为φ
n
(0)=-1<0,φ
n
(1)=n-1>0,所以φ
n
(x)在(0,1)[*](0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根. 因为φ’
n
(x)=1+2x+…+nx
n-1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x)在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,记为x
n
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/qLj4777K
0
考研数学二
相关试题推荐
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
设f(x)在[0,a]上一阶连续可导,f(0)=0,
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设A为n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
(2000年)曲线y=(2χ-1)的斜渐近线方程为_______.
随机试题
健康的机构应具备的10个特点是什么?
LuXun’s________interestinmedicinewaslaterreplacedbythatinliterature.
抢救巴比妥类药物急性中毒时,不宜采取
患儿生后7d,在家接生,出现发热,烦躁不安,吸吮困难,苦笑面容,阵发性痉挛、惊厥,脐部发红。该患儿护理措施不正确的是()。
编制资产负债表时应该归类为流动资产的有()。
绩效考评的主体不包括()。
下列关于吸收直接投资筹资方式的表述中,不正确的是()。
下列对商品房现售条件的描述,正确的有()
Peoplethanktheirparentswithtwodays:Mother’sDay,onthesecondSundayinMay,andFather’sDay,onthethirdSundayin
A、Takeajobtopaythetuitionfees.B、Visithisparentsinhishometown.C、Spendthesummerwithhisfriends.D、Workasavolu
最新回复
(
0
)