首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线性表示,并
设有向量α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a、b为何值时, (1)β不能由α1,α2,α3线性表示; (2)β可由α1,α2,α3惟一地线性表示,并
admin
2018-08-03
33
问题
设有向量α
1
=(1,2,0)
T
,α
2
=(1,a+2,一3a)
T
,α
3
=(一1,一b一2,a+2b)
T
,β=(1,3,一3)
T
.试讨论当a、b为何值时,
(1)β不能由α
1
,α
2
,α
3
线性表示;
(2)β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(3)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求出表示式.
选项
答案
设有一组数x
1
,x
2
,x
3
,使得 x
1
α
1
+x
2
α
2
+x
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:x=1一[*],x
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=[*]α
2
. (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为:x
1
=1一[*]+c,x
3
=c,其中c为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*]α
2
+cα
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/prg4777K
0
考研数学一
相关试题推荐
证明:
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A,B为两个n阶矩阵,下列结论正确的是().
设函数f(x,y)可微,,求f(x,y).
设f(x)为偶函数,且满足f’(x)+2f(x)一3∫0xf(t一x)dt=一3x+2,求f(x).
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
令A=[*],方程组(I)可写为AX=b,方程组(II)、(III)可分别写为ATY=0及[*]=0.若方程组(I)有解,则r(A)=r(A:b),从而r(AT)=[*],又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(III)同解;反之,若(Ⅱ)与
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
随机试题
按下室外消火栓泵启动按钮,室外消防水泵在接到启泵按钮等信号应在55s之内自动启动,使消防水枪出水的工作压力和流量满足灭火要求,开始灭火。()
A.人工肝B.精氨酸C.两者都是D.两者都不是治疗慢性肝性脑病用
根据《中华人民共和国环境影响评价法》,关于环境影响后评价的规定,下列说法中,错误的有()。
定基发展速度等于相应的各环比发展速度的( )。
在我国,对物流成本的管理更多地停留在()层次上。
阅读以下文字,完成下列问题。不久前,中国科学院遗传与发育生物学研究所公布了中国姓氏研究新成果。专家耗时两年,根据1110个县市、2.96亿人口、4100个姓氏的大量数据绘制出100张大姓分布图。研究发现:这些分布图与《中国人口主要死因地图集》
近年来,认知心理学与神经科学结合产生的新学科是()。(2014年)
下列关于增长率的描述错误的是()。
为清除井底污泥,用缆绳将抓斗放人井底,抓起污泥提出井口.设井深30m,抓斗自重400N,缆绳每米重50N,抓斗盛污泥2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速度从抓斗中漏掉.现将抓斗从井底提升到井口,问克服重力做功多少?
Howlongwillthewomanhaveoff?
最新回复
(
0
)