首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分. 求曲线y=f(x)的方程;
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分. 求曲线y=f(x)的方程;
admin
2013-06-01
102
问题
设位于第一象限的曲线y=f(x)过点
,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.
求曲线y=f(x)的方程;
选项
答案
[*] x
2
+2y
2
=1
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pb34777K
0
考研数学二
相关试题推荐
函数z=z(x,y)由方程y=xf(z)+φ(y,z)确定,其中f’,φ分别具有连续的导数和偏导数,且xf’+φz’≠0,则=__________。
曲线y=的渐近线条数为().
(2014年)设函数f(u)具有连续导数,z=f(excosy)满足若f(0)=0,求f(u)的表达式.
(11年)设F1(χ)与F2(χ)为两个分布函数,其相应的概率密度f1(χ)与f2(χ)是连续函数,则必为概率密度的是【】
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP。
(2010年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
(09年)设某产品的需求函数为Q=Q(p),其对价格P的弹性εp=0.2,则当需求量为10000件时,价格增加1元会使产品收益增加_______.
设φ1(x),φ1(x),φ3(x)是微分方程+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
微分方程满足初始条件y|x=2=0的特解为y=________.
随机试题
ThisWaytoDreamlandDaydreamingmeanspeoplethinkaboutsomethingpleasant,especiallywhenthismakesthemforgetwhatt
方程y’’-5y’+6y=x2e2x的一个特解可设为().
腭部手术的体位是腮腺手术的体位是
患者,男,48岁。上腹部无规律胀痛3年余,常因饮食不当而发作,偶有反酸,嗳气。心血管检查无异常。应首先考虑的是()
关于投标无效的相关规定,下列说法中正确的一项是()。
下列表述有误的是()。
楹联堪称我国传统文化的一大精粹。在浩瀚的“联海”中,有关清廉为官的对联________。诸多构思巧妙的“廉联”,既能传递廉洁从政的价值导向,又能抨击贪得无厌的行径,给人启迪、令人_______。
A.noxiousB.demandsC.inthefutureD.intensifiedPhrases:A.agriculturewillhavetobe【T13】______B.Waterproblems【T14】
《刑法》第267条规定:“抢夺公私财物,数额较大的,或者多次抢夺的,处三年以下有期徒刑、拘役或者管制,并处或者单处罚金;数额巨大或者有其他严重情节的,处三年以上十年以下有期徒刑,并处罚金;数额特别巨大或者有其他特别严重情节的,处十年以上有期徒刑或者无期徒刑
Avoideggs.Drink8glassesofwateraday.Eatingcarbswill【C1】______.Nutritionaladvicesuchasthishasbeentoutedforyea
最新回复
(
0
)