首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设B是n×n矩阵,A是n阶正定阵,证明: BTAB也是正定阵的充要条件为r(B)=n.
设B是n×n矩阵,A是n阶正定阵,证明: BTAB也是正定阵的充要条件为r(B)=n.
admin
2017-06-14
64
问题
设B是n×n矩阵,A是n阶正定阵,证明:
B
T
AB也是正定阵的充要条件为r(B)=n.
选项
答案
必要性.A正定,且B
T
AB正定,由(1)知,r(B)=r(B
T
AB)=n,故r(B)=n. 充分性.A正定,r(B)=n,则B
T
AB=B
T
D
T
DB=(DB
T
)(DB),因r(B)=n,D可逆,故DB可逆,从而B
T
AB正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pZu4777K
0
考研数学一
相关试题推荐
证明方程lnx=x-e在(1,e2)内必有实根.
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱仪装有3件合格品.从甲箱中任取3件产品放入乙箱后,乙箱中次品件数X的数学期望=__________;(2)从乙箱中任一件产品是次品的概率=_____________.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D绕直线x=e旋转一周所得旋转体的体积V.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
随机试题
与吸烟关系最密切的肺痛是()
患者男性,72岁,饮酒20年,每日饮酒约半斤。近8年记忆力逐渐下降,近1年不能写字。查体:血压150/90mmHg,四肢末梢发凉,皮肤发黑,双侧手指失认,左右失定向,不能书写,计算不能。余未见异常。本病病变部位在
A.Cl-内流B.Ca2+内流C.Na+内流D.K+外流E.K+内流
逆行性牙髓炎不同于其他牙髓炎的临床表现特点是
岩质边坡的倾倒破坏多发生在哪种边坡中?
贷款人到期不归还担保贷款的,商业银行依法享受的权利不包括()。
韦纳将人们活动成败的原因归结为6个因素,其中属于自身内在因素的是()。
公共政策的执行有哪些手段?()
下列各选项中,属于隶属型法律关系的是
Itisrequiredthateveryemployee(come)______intheiruniformbefore8:00a.m.
最新回复
(
0
)