首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是 ( )
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式 ①PA=B; ②P-1ABP=BA; ③P-1AP=B; ④PTA2P=B2 成立的个数是 ( )
admin
2019-02-18
42
问题
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式
①PA=B; ②P
-1
ABP=BA; ③P
-1
AP=B; ④P
T
A
2
P=B
2
成立的个数是 ( )
选项
A、1
B、2
C、3
D、4
答案
C
解析
逐个分析关系式是否成立.
①式成立.因为A,B均是N阶可逆矩阵,故存在可逆矩阵Q,w,使QA=E,WB=E(可逆矩阵可通过初等行变换化为单位矩阵),故有QA=WB,W
-1
QA=B.记W
-1
Q=P,则有PA=B成立,故①式成立.
②式成立.因为A,B均是n阶可逆矩阵,可取P=A,则有A
-1
(AB)A=(A
-1
A)BA=BA,故②式成立.
③式不成立.因为A,B均是n阶实对称矩阵,它们均可以相似于对角阵,但不一定相似于同一个对角阵,即A,B不一定相似.例如
(均满足题设的实对称可逆阵的要求),
但对任意可逆阵P,均有P
-1
AP=P
-1
EP=E≠B,故③式不成立.
④式成立.因为A,B均是实对称可逆矩阵,其特征值均不为零,A
2
,B
2
的特征值均大于零.故A
2
,B
2
的正惯性指数为n(秩为n,负惯性指数为0),故A
2
B
2
,即存在可逆阵P,使得P
T
A
2
P=B
2
.故④式成立.
由以上分析,故应选C.
转载请注明原文地址:https://www.kaotiyun.com/show/pYM4777K
0
考研数学一
相关试题推荐
求.
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设X,Y相互独立且都服从标准正态分布,则E|X—Y|=_________,D|X—Y|=_________.
设随机变量X与Y相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().
计算dxdy,其中f(μ)连续可导,曲面∑为z=-的上侧.
过点A(3,2,1)且平行于直线L1:及L2:的平面方程为_________.
计算dxdy,其中D为单位圆x2+y2=1所围成的第一象限的部分.
下列命题正确的是().
随机试题
简述企业文化的内容。
Itwasaveryhappyfamily.Thelifewasfairlywell-off.Father,Leopold,wasamusicmasterinAustria.Motherwaswarm-hearte
选择性降低浦氏纤维自律,缩短APD的药物
在住院患者的护理中,护士的管理协调者角色,主要体现在护士对临床护理工作需要
旅客携带伴侣犬、猫出境,物主在离境前持家庭所在地( )以上检疫部门出具的动物健康证书及狂犬病疫苗接种证书到离境口岸检验检疫机构报检。
传统的风险测量技术不能回答有多大的可能会产生损失,但可以度量不同市场中的总风险,将各个不同市场中的风险加总。()
自从1939年以来,人们做的大量科学研究表明烟草对人体健康危害极大。急需立法来禁止各种烟草产品的广告宣传。因为这种广告总是劝人们吸更多的烟,因而在很大程度上广告应对那些健康状况恶化或由肺癌致死的人们负责。
为统一指挥渡江作战,中共中央决定由()组成总前委。
物流成本管理的前提是编制物流成本预算。()
故国神游,___________,早生华发。人生如梦,___________。(苏轼《念奴娇.赤壁怀古》)
最新回复
(
0
)