首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中 ①如果矩阵AB=E,则A可逆且A-1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
下列命题中 ①如果矩阵AB=E,则A可逆且A-1=B; ②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E; ③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆; ④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。 正确的是( )
admin
2019-05-15
40
问题
下列命题中
①如果矩阵AB=E,则A可逆且A
-1
=B;
②如果n阶矩阵A,B满足(AB)
2
=E,则(BA)
2
=E;
③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;
④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。
正确的是( )
选项
A、①②。
B、①④。
C、②③。
D、②④。
答案
D
解析
如果A、B均为n阶矩阵,命题①当然正确,但是题中没有n阶矩阵这一条件,故①不正确。
例如
显然A不可逆。
若A、B为n阶矩阵,(AB)
2
=E,即(AB)(AB)=E,则可知A、B均可逆,于是ABA=B
-1
,从而BABA=E,即(BA)
2
=E。因此②正确。
若设
显然A、B都不可逆,但A+B=
可逆,可知③不正确。
由于A、B为均n阶不可逆矩阵,知|A|=|B|=0,且结合行列式乘法公式,有|AB|=|A||B|=0,故AB必不可逆。因此④正确。
所以应选D。
转载请注明原文地址:https://www.kaotiyun.com/show/pIc4777K
0
考研数学一
相关试题推荐
(1989年)已知曲面z=4一x2一y2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是______________.
设A为2阶矩阵,α1,α2为线性无关的2维列向量.Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
已知曲线L为曲面z=与x2+y2=1的交线,则x2y2z2ds=________。
已知α1,α2,α3与β1,β2,β3是三维向量空间的两组基,且β1=α1+2α2-α3,β2=α2+α3,β3=α1+3α2+2α3,则由基α1,α2,α3到基β1,β2,β3的过渡矩阵是_______.
由曲线L:绕y轴旋转一周所得到的旋转曲面在点(0,)处的指向外侧的单位法向量为_________.
曲线L:绕y轴一周所得旋转曲面在点(0,-1,2)处指向外侧的单位法向量为_________.
设P(x,y,z),Q(x,y,z)与R(x,y,z)在空间区域Ω内连续并且有连续的一阶偏导数,则“当(x,y,z)∈Ω时”是“对于Ω内的任意一张逐片光滑的封闭曲面S,(x,y,z)dydz+Q(x,y,z)dydz+R(x,y,z)dxdy=0”的
在区间(0,1)中随机地取两个数,则事件“两数之和小于”的概率为_______.
随机试题
使用模块化、可复用、可部署、可替换的软件单元搭建信息系统的开发方法是()
下述病人中宜用口服降糖药治疗的是
蛋白餐可使胰高血糖素分泌增多,其原因是
男,50岁。有肝硬化病史5年。突然出现呕血约800ml,伴黑粪,查体:神志清,血压100/60mmHg,心率100次/分。下列哪项护理措施不正确
泄泻的病理因素主要是
二维随机变量(X,Y)的密度函数则关于X的边缘密度函数fχ(x)=()。
某公司是一家发展十分迅速的企业。随着企业发展,公司的组织结构、技术条件等都发生了改变。公司在发展中不仅设立了新的职位,而且原有很多职位的工作内容和任职资格也发生了变化。但公司仍然沿用原有的职位说明书,造成职位说明书严重脱离实际。公司逐渐意识到了问题,决定
下列选项中,属于“隧道挖掘”问题主要表现的有()。
王某答应张某在2006年5月3日,也就是张某13岁生日时赠送张某一只牧羊犬甲。在张某生日当天,王某带牧羊犬甲去张某家的路上不慎将甲丢失。当日,郑某发现甲甚为喜欢,决定带回家中喂养。2007年6月郑某给牧羊犬配种生下两只小狗乙和丙,支付配种费2000元。郑某
Duringthenormaldevelopmentofself,achildisaffectedbycertaininfluentialfactors.1._____.Infantsformanattachmentwi
最新回复
(
0
)