首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,Ak也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2018-08-02
67
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
k
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ|
1
,|λ|
2
,…,|λ|
n
},则存在正交变换x=Py.使x
T
Ax=[*]λ
i
y
i
2
,且y
T
y=x
T
x,故|x
T
Ax|=[*]y
i
2
=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
k
,…,λ
n
k
.它们全都大于0,可知A
k
为正定矩阵. (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…|λ
n
|+1},则λ
i
+a≥|λ
i
|+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/p2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
证明:对任意的x,y∈R且x≠y,有
设A是,n阶矩阵,下列结论正确的是().
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设f(x)为二阶可导的偶函数,f(0)=1,f"(0)=2且f"(x)在x=0的邻域内连续,则=_______
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
随机试题
评估信息的次量性
眼球光学系统的主要组成为
患者,女,50岁。已确诊为右乳岩,胸胁胀满,嗳气频频,纳呆懒言,口苦咽干,舌淡苔薄白。脉弦滑。其证候是
人参归脾丸的功能主治为
等截面传动轴,轴上安装a、b、c三个齿轮,其上的外力偶矩的大小和转向一定,如图示。但齿轮的位置可以调换。从受力的观点来看,齿轮a的位置应放置在下列中何处?
数据格式为透明的是()的通道,它与信号速率及电调制方式无关,在网络发展中是理想的扩容手段,也是引入宽带新业务的方便手段。
请认真阅读下文,并按要求作答。望洞庭【唐】刘禹锡湖光秋月两相和,潭面无风镜未磨。遥望洞庭山水色,白银盘里一青螺。
对国家领导人可以提出罢免案的有()。
下列叙述中正确的是
【B1】【B6】
最新回复
(
0
)