首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明: ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
admin
2015-06-30
58
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:
ξ
1
,ξ
2
∈(0,3),使得f’(ξ1
0
)=f’(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0
0∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(c,x
0
)[*](0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/R834777K
0
考研数学二
相关试题推荐
[*]
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,4α,…,AAk-1α线性无关.
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
设an=∫01xndx,bn=sinntdt,则极限=()。
设函数f(x)满足xf’(x)-3f(x)=-6x2,且由曲线y=f(x)与直线x=1及x轴所围成的平面图形D绕x轴旋转一周所得旋转体的体积最小,试求D的面积。
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
从点P1(1,0)作x轴的垂线,交抛物线y=x2于点Q1(1,1),再从Q1作这条抛物线的切线与x轴交于P2,然后又从P2作x轴的垂线,交抛物线于点Q2…,依次重复上述过程得到一系列的点P1,Q1,P2,Q2,…,Pn,Qn,….(Ⅰ)求(Ⅱ)求级数其
设函数f(x)在x0的某一邻域内具有直到n阶的连续导数,且f’(x0)=f"(x0)=…..=f(n-1)(x0)=0,而f(n)(x0)≠0,试证:当n为奇数时,f(x0)不是极值.
随机试题
关于原发性肺脓肿,下列哪项不正确
患者,男,54岁,因外伤致右小腿皮肤裂伤,经清创缝合伤口3~5天后,患者高热,伤处肿胀、发红、剧痛,此时宜
下列前列腺摘除术后的护理措施正确的是
一般情况下法定传染病报告人不包括
为保证生产安全,根据《劳动合同法》规定,用人单位在制订、修改或者决定有关()等直接涉及劳动者切身利益的规章制度或者重大事项时,应当经职工代表大会或者全体职工讨论,提出方案和意见,与工会或者职工代表平等协商确定。
把实行计划生育作为我国的一项基本国策是在()年明确提出的。
下列关于期权的叙述不正确的是()。
支付结算业务是银行的中间业务,因此,其主要收入来源是手续费收入。()
坚持向科技、教育要警力,要战斗力,把()放在优先发展的战略地位。
下列文中横线处依次填入标点符号正确的一项是:恩格斯说过:“言简意赅的句子,一经了解,就能牢牢记住,变成口号;而这是冗长的论述绝对做不到的______毛泽东同志也强调过,讲话、写文章”都应当简明扼要______我国历代作家常以“意则期多,字则唯少——作为
最新回复
(
0
)