首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
admin
2018-09-20
76
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
,如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组AX=β的通解.
选项
答案
由α
1
=2α
2
一α
3
及α
2
,α
3
,α
4
线性无关知r(A)=r(α
1
,α
2
,α
3
,α
4
)=3.且对应齐次方程组AX=0有通解k[1,一2,1,0]
T
,又β=α
1
+α
2
+α
3
+α
4
,即 [α
1
,α
2
,α
3
,α
4
]X=β=α
1
+α
2
+α
3
+α
4
=[α
1
,α
2
,α
3
,α
4
][*] 故非齐次方程组有特解η=[1,1,1,1]
T
,故方程组的通解为k[1,一2,1,0]
T
+[1,1,1,1]
T
,k为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ojW4777K
0
考研数学三
相关试题推荐
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量.
设证明:f(x,y)在点(0,0)处可微,但在点(0,0)处不连续.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x)的极值.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设则f(x)在点x=0处().
设三阶行列式D3的第二行元素分别为1、—2、3,对应的代数余子式分别为—3、2、1,则D3=________。
行列式
随机试题
A.手术治疗为主B.非手术治疗为主C.先用非手术治疗,必要时采取手术治疗D.必须手术治疗E.中医中药治疗小肠扭转的治疗措施应是
对于鼻咽癌哪一项是不正确的
A、抑制胃酸分泌B、保护胃黏膜C、早期手术D、减少胆汁反流E、根除幽门螺杆菌(Hp)胃溃疡恶变的治疗
宋朝刑罚制度的变化主要表现为:()。
作为天然饰面石材,花岗岩与大理石相比()。【2010年真题】
美国的独立审计准则体系包括()三部分。
A注册会计师负责对甲公司20×9年度财务报表进行审计。A注册会计师遇到下列事项,请代为做出正确的专业判断。A注册会计师应当直接与治理层沟通的事项有()。
本为周天子所设大学,东汉以后除北宋末年外,均为行大射、祭礼的地方是()。
某单位在编一本年鉴,其页数需要用6869个数字,那么这本年鉴共有()页。
由于常规的抗生素的使用可以产生能在抗生素环境下存活的抗生菌,人体内存在抗生菌是由于人们使用处方抗生素,但是一些科学家相信人体内大多数抗生菌是由人们吃下的已经被细菌感染的肉类而来的。以下哪一项论述,如果是正确的,将最显著地增强这些科学家的假想?
最新回复
(
0
)