首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(θ为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(θ为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
admin
2016-10-20
73
问题
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)
2
,EX=2(1-θ)(θ为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
选项
答案
(Ⅰ)设X的概率分布为P{X=0}=p
0
,P{X=1}=p
1
,P{X=2}=p
2
,由题设知p
2
=(1-θ)
2
,又EX=2(1-θ)=0×p
0
+1×p
1
+2p
2
=p
1
+2p
2
=p
1
+2(1-θ)
2
,解得p
1
=2(1-θ)-2(1-θ)
2
=2θ(1-θ),而p
0
+p
1
+p
2
=1,所以p
0
=1-p
1
-p
2
=θ
2
,X的概率分布为 [*] (Ⅱ)应用定义求矩估计值、最大似然估计值.令μ=EX=2(1-θ),解得θ=1-[*],于是θ的矩估计量[*],将样本值代人得θ的矩估计值为[*].又样本值的似然函数 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oaT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=().
投掷一枚硬币三次,观察三次投掷出现正反面情况,比如一种可能结果为HTT(表示第一次出现的是正面,第二次和第三次出现的都是反面).(1)写出所有可能结果构成的样本空间Ω;(2)事件A表示恰好出现两次正面,写出A中所包含的所有可能结果;
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
求下列函数的所有二阶偏导数:
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
设X1,X2,…,Xn(n>1)是来自总体N(μ,σ2)的随机样本,用2X2-X1,及X1作总体参数μ为估计算时,最有效的是_______.
随机试题
寒衣处处催刀尺,________。(杜甫《秋兴八首》)
安全检查工作应遵循一定的工作程序,不属于安全检查必要步骤的内容是()。
甲家旁边有一建筑工地正在施工。某日,一火车经过甲家门前,由于颠簸掉落货物一件,被甲拾得据为己有。其后,甲发现有利可图,遂在门前洒落许多砖石。次日,果然又拾得两袋车上颠落的货包。关于甲行为性质的说法,正确的有()。
企业财产清查中,发现账外设备一台,报经批准后,应冲减“营业外支出”。()
中国天主教著名的教堂有()。
《潇湘图》的作者是五代画家()。
在现场勘验或者搜查中发现的可用以证明犯罪嫌疑人有罪或者无罪的各种物证、书证需要扣押的,由公安局局长决定。( )
关于FAT32文件系统的特点,错误的描述是( )。
A、No,that’smyaunt’s.B、No,that’smymother.C、Yes,Ilovemymother.A
WhenMomandDadGrowOld[A]Theprospectoftalkingtoincreasinglyfragileparentsabouttheirfuturecanbe"oneofthemost
最新回复
(
0
)