首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
admin
2019-11-25
54
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,则该方程的通解为( ).
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)
B、C
1
[φ
1
(x)-φ
2
(x)]+C
2
φ
3
(x)
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)-φ
3
(x)]
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y”+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,所以φ
1
(x)-φ
3
(x),φ
2
(x)-φ
3
(x)为方程y”+a
1
(x)y’+a
2
(x)y=0的两个线性无关解,于是方程y”+a
1
(x)y’+a
2
(x)y=f(x)的通解为C
1
[φ
1
(x)-φ
3
(x)]+C
2
[φ
2
(x)-φ
3
(x)]+φ
3
(x),即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1-C
1
-C
2
或C
1
+C
2
+C
3
=1,选D.
转载请注明原文地址:https://www.kaotiyun.com/show/oED4777K
0
考研数学三
相关试题推荐
设四元齐次线性方程组(I)又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设a0=0,a1=1,an+1=3an+4an+1(n=1,2,…).(1)令(2)求幂级数的收敛半径、收敛区间、收敛域及和函数.
设u1=2,(n=1,2,3,…).证明:级数收敛.
设(1)计算A2,并将A2用A和E表出;(2)证明:当k>2时,Ak=O的充分必要条件为A2=O.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程组AX=0的通解是_______.
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求:(1)EZ,DZ;(2)用切比雪夫不等式估计P{|Z|≥2}.
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)(1+xn)收敛;(Ⅲ)Fn(x)=+∞。
设u=f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则=______.
随机试题
为了适应各种类型生产的特点和管理要求,产品成本计算对象不外乎就是【】
味觉性出汗综颌征
男性,18岁,着凉后出现发热,咳嗽,咳黄痰,未及时治疗,1d前出现高热,咳铁锈色痰。该患者的热型为
开发商成本利润率是开发经营期利润率,且年成本利润率不等于成本利润率除以开发经营期的年数。()
甲企业有一项年金,存续期为10年,前3年无现金流出,后7年每年年初现金流出180万元,假设年利率为8%,则该项年金的现值是()万元。[已知:(P/A,8%,7)=5.2064,(P/F,8%,3)=0.7938]
(2013)某企业进行人力资源需求与供给预测,通过统计研究发现,销售额每增加500万元,需增加管理人员、销售人员和客服人员共20人。新增人员中,管理人员、销售人员和客服人员的比例是1:7:2,该企业预计2014年销售额将比2013年销售额增加1000万元
科学就是不断接近真理的过程,我们深信不疑的事情中很大部分是会过期的,所有理解这一点的人都明白在发展过程中不断更新知识才是科学进步的正道。然而这个过程有时会令人困惑和不安。如果以下各项为真,最能质疑上述论断的是()。
文中划线的句子,对其复句关系分析正确的一项是:根据本文提供的信息,下列推断正确的一项是:
二元函数f(x,y)=xy在点(e,0)处的二阶(即n=2)泰勒展开式(不要求写余项)为________.
在面向对象方法中,实现信息隐蔽是依靠()。
最新回复
(
0
)