首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-∫0xf(t)dt=0. (1)求f(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-∫0xf(t)dt=0. (1)求f(x);(2)证明:当x≥0时,e-x≤f(x)≤1.
admin
2018-05-25
89
问题
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-
∫
0
x
f(t)dt=0.
(1)求f(x);(2)证明:当x≥0时,e
-x
≤f(x)≤1.
选项
答案
(1)(x+1)f’(x)+(x+1)f(x)-∫
0
x
f(t)dt=0,两边求导数,得(x+1)f’’(x)=-(x+2)f’(x)=> [*] 再由f(0)=1,f’(0)+f(0)=0,得f’(0)=-1,所以C=-1,于是 [*] (2)当x≥0时,因为f’(x)<0且f(0)=1,所以f(x)≤f(0)=1. 令g(x)=f(x)-e
-x
.g(0)=0,g’(x)=f’(x)+e
-x
=[*] 由 [*] =>g(x)≥0=>f(x)≥e
-x
(x≥0).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/nsW4777K
0
考研数学三
相关试题推荐
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=1-=0下有最大值和最小值,且它们是方程k2-(Aa2+Cb2)k+(AC-B2)a2b2=0的根.
设u=x4+y4-4x2y2,则=_________.
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设随机变量X的概率密度为已知EX=2,P(1<X<3)=,求(1)a,b,b的值,(2)随机变量Y=ex的数学期望和方差.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
假设G={(x,y)|x2+y2≤r2}是以原点为圆心,半径为r的圆形区域,而随机变量X和Y的联合分布是在圆G上的均匀分布.试确定随机变量X和Y的独立性和相关性.
设随机变量X的分布函数为F(x)=A+Barctanx,-∞<x<+∞.求:(1)系数A与B;(2)P{-1<X≤1};(3)X的概率密度.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
设α1,α2,α3,α4,α5为4维列向量,下列说法中正确的是()
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是()
随机试题
慢性肝淤血的病理变化有
消化性溃疡发病机制的描述中哪项正确
补肝肾,行血脉,续筋骨,有补而不滞优点的药物是()
预制安装水池的壁板缝在浇筑混凝土时,壁板接缝的内模宜一次安装到顶;外模应分段随浇随支。分段支模高度不宜超过()m。
国有独资保险公司设立监事会,对国有独资保险公司提取各项准备金、最低偿付能力和国有资产保值增值等情况以及高级管理人员违反法律、行政法规或者章程的行为和损害公司利益的行为进行监督。( )
该企业销售毛利率为( )。接上题,如果该企业权益乘数为1.6,则该企业股东权益收益率为( )。
劳动争议调解组织在收到调解申请之日起的一定期限内,未达成调解协议的,当事人可以依法申请仲裁。该期限为()日。
艺术作品的()是统一和不可分割的有机体。
根据下面材料回答下列问题。下列表述与资料不符的是()。
运行下面程序后,正确的输出结果是()。publicclassSun{publicstaticvoidmain(Stringargs[]){intx=6;if(x
最新回复
(
0
)