首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn试推导σ2的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
总体X~N(2,σ2),从X中抽得简单样本X1,…,Xn试推导σ2的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ2的置信度为0.95的置信区间.(χ0.9752(6)=14.449,χ0.0252(6)=1.
admin
2018-08-30
39
问题
总体X~N(2,σ
2
),从X中抽得简单样本X
1
,…,X
n
试推导σ
2
的置信度为1-α的置信区间.若样本值为:1.8,2.1,2.0,1.9,2.2,1.8.求出σ
2
的置信度为0.95的置信区间.(χ
0.975
2
(6)=14.449,χ
0.025
2
(6)=1.237.下侧分位数.)
选项
答案
χ
2
=[*](X
i
-2)
2
~χ
2
(n), ∴1-α=[*] 故σ
2
的置信区间为: [*] 对1-α=0.95,n=6,可算得[*](χ
i
-2)
2
=0.14, 故σ
2
的置信区间为[*]=[0.009689,0.1132].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/nMg4777K
0
考研数学一
相关试题推荐
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
将函数f(x)=arctan展开成x的幂级数.
求幂级数的和函数.
假设从单位正方形区域D={(x,y)|0≤x≤1,0≤y≤1}中随机地选取一点,以该点的两个坐标x与y作为直角三角形的两条直角边,求该直角三角形的面积大于的概率P.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知(x-1))y″-xy′+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y″-xy′+y=(x-1)2的解,则此方程的通解是y=___________.
设随机变量X与Y相互独立同分布,且X的概率分布为,记U=max(X,Y),V=min(X,Y),试求:(Ⅰ)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
接连不断地、独立地对同一目标射击,直到命中为止,假定共进行n(n≥1)轮这样的射击,各轮射击次数相应为k1,k2,…,kn,试求命中率p的最大似然估计值和矩估计值.
设随机事件A、B及其和事件A∪B的概率分别是0.4,0.3和0.6.若表示B的对立事件,则积事件A的概率P(A)=____________.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(X)]没有间断点。
随机试题
物流发展战略目标不包括()。
临床常用药流方法是
谈判成本包括谈判活动全过程各项物质消耗和损失的价值,即()。
重要公共建筑、高层建筑的屋面雨水排水工程与溢流设施的总排水能力不应小于()年重现期的雨水量。
某建筑消防水泵控制柜与消防水泵设置在同一房间。系统管网泄漏量测试结果为0.75L/s,高位消防水箱出水管上设置流量开关,动作流量设定值为1.75L/s。消防水泵性能和控制柜性能合格,室内外消火栓系统系统验收合格。在竣工验收三年后的日常运行中,消防水泵经常发
《民主主义与教育》的作者是()。
唯心主义在现代哲学中其基本形态是()。
下列关于公文抄送的说法,正确的有()。
A、11,706.62B、11,577.74C、11,722.98D、11,755.72B
"Doyouregretpayingfiftydollarsforthedog?""No,Iwouldgladlypay______forhim."
最新回复
(
0
)