首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:{Xi}与{Xi}都是参数θ的无偏估计量,试比较其有效性.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:{Xi}与{Xi}都是参数θ的无偏估计量,试比较其有效性.
admin
2019-11-25
80
问题
设总体X在区间(0,θ)内服从均匀分布,X
1
,X
2
,X
3
是来自总体的简单随机样本.证明:
{X
i
}与
{X
i
}都是参数θ的无偏估计量,试比较其有效性.
选项
答案
因为总体X在区间(0,Θ)内服从均匀分布,所以分布函数为 F(x)=[*] 令U=[*]{X
i
),V=[*]{X
i
),则 F
U
=P(U≤u)=P(max{X
1
,X
2
,X
3
}≤u)=P(X
1
≤u,X
2
≤u,X
3
≤u) =P(X
1
≤u)P(X
2
≤u)P(X
3
≤u)=[*] F
V
(v)=P(V≤v)=P(min{X
1
,X
2
,X
3
}≤v)=1-P(min{X
1
,X
2
,X
3
}>v) =1-P(X
1
>v,X
2
>v,X
3
>v)=1-P(X
1
>v)P(X
2
>v)P(X
3
>v) =1-[1-P(X
1
≤v)][1-P(X
2
≤v)][1-P(X
3
≤v)] =[*] 则U,V的密度函数分别为f
U
(x)=[*]f
V
(x)=[*] 因为E([*]U)=[*]E(U)=[*]x×[*]dx=θ, E(4V)=4E(V)×4[*]x×[*](1-[*])
2
dx=θ, 所以[*]{X
i
}与[*]{X
i
)都是参数θ的无偏估计量. D(U)=E(U)
2
-[E(U)]
2
=[*]x
2
×[*]dx-([*]θ)
2
=[*], D(V)=E(V)
2
-[E(V)]
2
=[*]x
2
×[*](1-[*])
2
dx-([*]θ)
2
=[*], D([*])=D([*]U)=[*],D([*])=D(4V)=16×[*], 因为D([*])<D([*]),所以[*]更有效.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/n1D4777K
0
考研数学三
相关试题推荐
设总体X~N(μ,σ2),X1,X2,X3是来自总体X的样本,证明估计量的期望都是μ,并指出它们中哪一个方差最小.
设X1,X2,…,Xn为总体X的一个样本,已知EX=μ,DX=σ2<+∞,求和E(S2).
设函数y(x)在(-∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(Ⅱ)求解变换后的微分方程的通解。
设f(x)是幂级数在(-1,1)内的和函数,求f(x)和f(x)的极值。
设x~N(0,1),x1,x2,…,x7是取自x的简单随机样本,Y=服从t(n)分布,则(c,n)为()。
设总体X的概率分布为X~,其中参数θ未知且。从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,-1,1,1,2,1。试求:(Ⅰ)θ的矩估计值;(Ⅱ)θ的最大似然估计值;(Ⅲ)经验分布函数F8(x)。
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(I)求的数学期望;(Ⅱ)求方差
假设X1,X2,…,X16是来自正态总体N(μ,σ2)的简单随机样本,为其均值,S为其标准差,如果=0.95,则参数a=_____.(t0.05(15)=1.7531)
随机试题
若旅游者自费预订了风味餐邀请地陪参加时,用餐中地陪应注意的问题是()。
细胞和组织的适应性反应不包括
用治暑湿泄泻,利小便以实大便是指何药
在施工进展过程中,对预测可能发生的风险进行监控并提出预警即风险管理中的()
过渡时期总路线就其基本任务而言,所体现的基本特征是()。
根据《商业银行法》的规定,商业银行不得向关系人发放信用贷款。下列哪一类人属于该规定所指的关系人?()
设u=u(x,y)在全平面有连续偏导数,若,求证:u(x,y)=u(0,0)为常数;
Mammalsvaryenormouslyinsize,fromweighinglessthanapennytomeasuringmorethanthreeschoolbusesinlength.Somegroup
数据组织方法中的层次方法是基于哪种结构的数据操作集合、完整性规则集合
窗体上有一个名称为VScroll1的垂直滚动条,要求程序运行时,滚动块的初始位置在最下端,应该使VScroll1.Value的值等于( )。
最新回复
(
0
)