首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)T,k是任意常数,其中A是二次型f(χ1,χ2,χ3)=χTAχ对应的矩阵,且r(A)=1. (I)求方程组Aχ=0的通解. (Ⅱ)求二次型f(χ1,χ2,χ3).
admin
2019-08-11
112
问题
设齐次线性方程组(2E-A)χ=0有通解χ=kξ=k(-1,1,1)
T
,k是任意常数,其中A是二次型f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ对应的矩阵,且r(A)=1.
(I)求方程组Aχ=0的通解.
(Ⅱ)求二次型f(χ
1
,χ
2
,χ
3
).
选项
答案
(Ⅰ)A是二次型的对应矩阵,故A
T
=A,由(2E-A)χ=0有通解χ=Kξ
1
=k(-1,1,1)
T
,知A有特征值λ
1
=2,且A的对应于λ
1
=2的线性无关的特征向量为ξ
1
=(-1,1,1)
T
. 由于r(A)=1,故知λ=0是A的二重特征值.Aχ=0的非零解向量即是A的对应于λ=0的特征向量. 设λ
2
=λ
3
=0所对应的特征向量为ξ=(χ
1
,χ
2
,χ
3
)
T
,由于实对称矩阵不同特征值对应的特征向量相互正交,故ξ与ξ
1
相互正交. 由ξ
1
T
ξ=-χ
1
+χ
2
+χ
3
=0,解得ξ
2
=(1,1,0)
T
,ξ
3
=(1,0,1)
T
. 故方程组Aχ=0的通解为k
2
ξ
2
+k
3
ξ
3
,k
2
,k
3
为任意常数. (Ⅱ)求二次型即是求其对应矩阵. P=(ξ
1
,ξ
2
,ξ
3
)=[*]为可逆矩阵,且P
-1
=[*] 则[*] 故二次型为f(χ
1
,χ
2
,χ
3
)=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/myN4777K
0
考研数学二
相关试题推荐
设,其中abc=-6,A*是A的伴随矩阵,则A*有非零特征值_____.
______.
微分方程y″-3yˊ+2y=xex的通解为y=______.
______.
设,X是2阶矩阵.求满足AX-XA=O的所有X;
设求区间(-1,+∞)上的fˊ(x),并由此讨论区间(-1,+∞)上f(x)的单调性.
设区域,其中常数a>b>0.D1是D在第一象限的部分,f(x,y)在D上连续,等式恒成立的充分条件是()[img][/img]
(07年)设D是位于曲线(a>1,0≤x<+∞)下方、x轴上方的无界区域.(I)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
随机试题
我国进入全面小康社会决定性阶段召开的大会是()
患者,女性,51岁。既往体健。发热、咳嗽伴呼吸困难3天入院。入院后第2天出现病情加重,呼吸急促,伴烦躁,血压80/40mmHg,呼吸38次/分,心率110次/分,律齐,两肺可闻及少许湿啰音。血气分析(FiO250%):pH7.34,PaO250mmH
以下哪个不是低钾血症的心电图表现
尿中胆红素检测阴性的黄疸类型是
()预制构件脱模后,构件外装饰材料破损不严重可不进行修补。
投资项目购置进口设备的进口从属费用中,以进口设备到岸价(CIF价)为计费基数的是()。
下列的财政分权理论论证了地方政府的适当规模问题的是()。
当办事需要外国人护照时,地陪的正确做法是()。
进程是一个内核级别的实休,而线程是一个【】级的实体。
Aftercareful______(consider),thecommitteeagreedontheproposal.
最新回复
(
0
)