首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
admin
2021-02-25
45
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,-3,5,1)
T
,α
3
=(3,2,-1,p+2)
T
,α
4
=(-2,-6,10,p)
T
,
p为何值时,该向量组线性相关?并在此时求出它的秩和极大线性无关组.
选项
答案
p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关,其秩为3,并且α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/mi84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
设四阶矩阵B满足,求矩阵B.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
随机试题
在计算机通信与网络中,广泛采用的信号同步方式有( )和字符同步两种。
葡萄胎随访时必须进行的检查是
某企业购入物资一批,货款付清,物资入库。该项业务中,取得或填制的原始凭证有:增值税专用发票1张,银行结算凭证1张,收料单5张,收料凭证汇总表1张,则在记账凭证中注明的附件张数应为( )。
行政责任主要包括行政处罚和刑事处罚两种方式。()
杭州月亮有限公司HangzhouMoonCo.Ltd.是一家流通性外贸企业,2005年12月15日收到德国KKKCo.Ltd.的订单如下:ORDERNO.:040426DATE:14Dec,2005SUPPLIER:H
根据票据法律制度的规定,支票的下列记载事项中,可由出票人授权补记的是()。
下列各项属于海上运输货物保险的特殊附加险的是()。
随着年龄增长,晶体能力与流体能力“此消彼长”。
在窗体上画一个命令按钮,然后编写如下事件过程:PrivateSubCommand1_Click()Dima(1To10)Dimp(1To3)k=5Fori=1To10
Mr.Reeceisaninterestingoldman.Mr.Reeceworked【C1】_______afarm.Heandhiswife【C2】_______alotofthingsandthey
最新回复
(
0
)