首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,-3)T,则α2由α1,α3,α4表示的表达式为_______.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,-3)T,则α2由α1,α3,α4表示的表达式为_______.
admin
2019-07-17
48
问题
设A=(α
1
,α
2
,α
3
,α
4
)为4阶方阵,且AX=0的通解为X=k(1,1,2,-3)
T
,则α
2
由α
1
,α
3
,α
4
表示的表达式为_______.
选项
答案
α
2
=-α
1
-2α
3
+3α
4
解析
因为(1,1,2,-3)
T
为AX=0的解,
所以α
1
+α
2
+2α
3
-3α
4
=0,故α
2
=-α
1
-2α
3
+3α
4
.
转载请注明原文地址:https://www.kaotiyun.com/show/mBN4777K
0
考研数学二
相关试题推荐
求证:方程lnχ=在(0,+∞)内只有两个不同的实根.
求微分方程xy"+2y’=ex的通解.
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解。
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.求方程组(Ⅱ)BX=0的基础解系;
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.求方程组(Ⅰ)的基础解系;
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12-4y22-4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=试求f(t).
设z=f(2x—y)+g(x,xy),其中函数f(t)二阶可导,g(u,y)具有连续二阶偏导数,
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:f(x);
随机试题
2015年3月1日,甲、乙签订租赁合同,甲将其房屋租给乙,租期为3年,租金每年5万元。3年之后,乙仍然居住在该房屋中,甲并未表示反对。2018年8月1日,经甲同意,乙、丙达成口头协议,将房屋转租给丙,租期为2年,租金每年6万元。丙与妻子搬进该房屋居住。20
亨利希·曼的揭露批判帝国主义的“帝国三部曲”是
以软骨变性破坏为主要病理改变的风湿病是
某市政府依王某申请,作出行政复议决定,撤销市国土房管局对王某房屋的错误登记,并责令市国土房管局在一定期限内重新登记。市国土房管局拒不执行该行政复议决定,王某有权采取的措施是()。
我国信托制度最早诞生于()。
社会工作的基本功能是()。
布卢姆把教育目标分为三个领域:认知领域、情感领域、技能领域。他进一步把认知领域的目标分为六类,这六类目标构成了由低到高的一个阶梯。其中能力培养的最低层次是()。
番茄果实的红色对黄色为显性,两室对多室为显性,植株高茎对矮茎为显性。三对相对性状分别受三对非同源染色体上的非等位基因控制。育种者用纯合红色两室矮茎番茄与纯合黄色多室高茎番茄杂交。下列有关叙述正确的是()。
为了进一步促进纳税人和税务工作者之间的关系,增进交流,税务机关要面向群众举办税务开放日活动。如果你是组织者,请拟定三个有趣味性的活动主题,并就其中一个具体谈谈你会如何开展。
以下不属于SNMPv3引擎提供的服务(40)。
最新回复
(
0
)