首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
admin
2019-01-05
69
问题
设n阶矩阵A满足(aW一A)(bE—A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=O,得|aE—A|.|bE—A|=0,则|aE—A|=0或者 同时r(aE—A)+r(bE一A)≥rE(aE—A)一(bE—A)]=rE(a一b)E]=n. 所以r(aE—A)+r(bE一A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE—A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE一A|=0,则a,b都是矩阵A的特征值. 方程组(aE一A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE—A)X=0的基础解系含有n一r(bE—A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE—A)个. 因为n一r(aE—A)+n—r(bE—A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/m0W4777K
0
考研数学三
相关试题推荐
设函数y=y(x)由方程组
设随机变量X,Y相互独立,X在区间[0,5]上服从均匀分布,Y服从参数为1的指数分布,令Z=max{X,Y}.(1)求随机变量Z=max(X,Y)的概率密度;(2)计算P(X+Y>1).
计算二重积分(x2+y)dσ,其中D是由x2+y2=2y的上半圆,直线x=一1,x=1及x轴围成的区域.
设随机变量X与Y相互独立,且均服从正态分布N(0,1),则().
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则
设数列{an}满足条件:a0=3,a1=1,an—2一n,(n—1)an=0(n≥2)。S(x)是幂级数anxn的和函数。(Ⅰ)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
设A,B为随机事件,且(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于P”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}。
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(u+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
随机试题
强调将企业经营目标集中到某一特定细分市场的战略是()
未来的计算机将向巨型化、微型化、( )、智能化和多媒体化的方向发展。
流行性出血热是一种病情凶险的病毒感染,其病原体是
某化工厂的合成车间动力安装工程如图6.Ⅲ所示。(1)APl为定型动力配电箱,电源由室外电缆引入,基础型钢采用10#槽钢(单位重量为10kg/m)。(2)所有埋地管标高均为-0.2m,其至APl动力配电箱出口处的管口高出地坪0.1m,设备基础顶标高为+0
金融体系由()构成。
某歌星在一次演出后,按合同规定应获得劳务报酬18000元。主办单位按照税法,代扣其个人所得税后,应向该歌星实际支付()元。
依次填入下列横线处的词语,最恰当的一组是:①2003年2月1日,美国“哥伦比亚”号航天飞机在从太空返回地面途中解体,机上7名宇航员全部______。消息传出,世界震惊。②地球生态系统是经过自然界的长期______形成的,它是人类生活的惟
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,的解.
2014年1月,由于DNS根服务器被攻击,国内许多互联网用户无法访问.COM域名网站,这种恶意攻击可能造成的危害是________。
EATS,SHOOTSANDLEAVES—abookreviewThetitleofEats,ShootsandLeavesreferstoafamouslymisp
最新回复
(
0
)