首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得f′(ξ)=f′(η).
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得f′(ξ)=f′(η).
admin
2019-08-23
60
问题
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得f′(ξ)=
f′(η).
选项
答案
令F(χ)=χ
2
,F′(χ)=2χ≠0(a<χ<b),由柯西中值定理,存在η∈(a,b),使得 [*] 整理得[*], 再由微分中值定理,存在ξ∈(a,b),使得[*]f′(ξ),故f′(ξ)=[*]f′(η).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lzA4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(χ)在[a,b]上满足|f〞(χ)|≤2,且f(χ)在(a,b)内取到最小值.证明:|f′(a)|+|f′(b)|≤2(b-a).
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(x)在x0处n阶可导,且f(n)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2),证明:(1)当n为偶数且f(n)(x0)<0时f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>0时f(x)在x0处取得极小值.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[a,b]上连续,在(a,b)上可导,且f(A)=f(B)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
随机试题
左图为给定的多面体,将其从任一面剖开,哪项不可能是该多面体的截面?
单一式教育预测和单对象教育预测是()
患儿9岁,左上侧切牙牙齿变色就诊。检查:冠折牙本质暴露,牙齿变色。冷热测无反应,x线片示根尖喇叭口,骨硬板不连续,下列各项中哪项最重要
王某,男,25岁,发现阴囊肿大,不痛,透光实验阳性,超声显示:睾丸附着鞘膜囊的一侧,睾丸三面均为无回声区包绕,它最可能是:
关于先天遗传性长QT间期综合征的表述,不正确的是
下述控制梭状芽孢杆菌生长繁殖的方法中,错误的是
旅行社对保险公司请求赔偿或者给付保险金的权利,自其知道保险事故发生之日起2年不行使而消灭。()
作为保护动物的大熊猫和丹顶鹤,主要栖息地和保护地是在()。
计划:执行
法决定于经济基础,表现在()。
最新回复
(
0
)