首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为 αs=α1+2α2+3α3+…+(s一1)αs-1 (1)证明齐次线性方程组 α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0 (
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为 αs=α1+2α2+3α3+…+(s一1)αs-1 (1)证明齐次线性方程组 α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0 (
admin
2018-09-20
116
问题
设n维向量α
s
可由α
1
,α
2
,…,α
s-1
唯一线性表示,其表出式为
α
s
=α
1
+2α
2
+3α
3
+…+(s一1)α
s-1
(1)证明齐次线性方程组
α
1
x
1
+α
2
x
2
+…+α
i-1
x
i-1
+α
i+1
x
i+1
+…+α
s
x
s
=0 (*)
只有零解(i=1,2,…,s);
(2)求线性非齐次方程组
α
1
x
1
+α
2
x
2
+…+α
s
x
s
=α
1
+2α
2
+…+sα
s
(**)
的通解.
选项
答案
(1)齐次线性方程组α
1
x
1
+α
2
x
2
+…+α
i-1
x
i-1
+α
i+1
x
i+1
+…+α
s
x
s
=0只 有零解[*]r(α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
)=s—1(未知量个数)[*]α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
线性无关. 设有数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,使得 k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
=0. 将题设条件α
s
=α
1
+2α
2
+…+(s一1)α
s-1
代入上式,得 k
1
α
1
+k
2
α
2
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s-1
α
s-1
+k
s
[α
1
+2α
2
+…+(s—1)α
s-1
]=0, 即 (k
1
+k
s
)α
1
+(k
2
+2k
s
)α
2
+…+[k
i-1
+(i一1)k
s
]α
i-1
+ik
s
α
i
+ [k
i+1
+(i+1)k
s
]α
i+1
+…+[k
s-1
+(s-1)k
s
]α
s-1
=0. 由条件知,α
1
,α
2
,…,α
s-1
线性无关,故有 [*] 因i≠0,由ik
s
=0,得k
s
=0,从而有k
1
=k
2
=…=k
i-1
=k
i+1
=…=k
s-1
=0. 所以α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
线性无关,于是方程组(*)只有零解. (2)因α
1
,α
2
,…,α
s-1
线性无关,α
s
=α
1
+2α
2
+3α
3
+…+(s—1)α
s-1
,有 r(α
1
,α
2
,…,α
s-1
)=s一1=r(α
1
,α
2
,…,α
s
,(α
1
+2α
2
+…+sα
s
)). 故方程组(**)有通解kξ+η,其中 ξ=[1,2,…,(s-1),一1]
T
,η=[1,2,…,s]
T
,k是任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lkW4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
已知有三个线性无关的特征向量,则a=________.
设,求a,b及正交矩阵P,使得PTAP=B.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
由曲线x2+(y一2a)2≤a2所围成平面图形绕x轴旋转得到的旋转体体积等于________.
设函数f(x)=(x一x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=xn时连续.(1)证明f(x)在点x=x0处可导;(2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
已知三阶行列式
随机试题
猛药去疴:重典治乱
三相单三拍运行与三相双三拍运行相比。前者较后者运行平稳可靠。()
关于慢性胃溃疡的大体特点描述,正确的是
女,70岁。突发上腹痛12小时,伴寒战、发热。既往因十二指溃疡行大部切除毕Ⅱ式吻合术。查体:T39.5℃,P110次/分,BP80/50mmHg,皮肤、巩膜黄染,右上腹及剑突下肌紧张,压痛、反跳痛(+),血WBC16×109/L。腹部B超示:胆总管扩张,下
乳剂由O/W型转变为W/O型的现象称为乳剂的
公路工程注册建造师施工管理签章文件中,()是施工项目接受施工监理的监督管理,认真建立环境保证体系、制订环境保护技术措施的体现。
身体语言包括()。
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,两个条件联合起来也不充分
Joyandsadnessareexperiencedbypeopleinallculturesaroundtheworld,buthowcanwetellwhenotherpeoplearehappyord
宏操作SetValuie可以设置()。
最新回复
(
0
)