首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是( ).
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是( ).
admin
2021-11-15
61
问题
设三阶矩阵A的特征值为λ
1
=-1,λ
2
=0,λ
3
=1,则下列结论不正确的是( ).
选项
A、矩阵A不可逆
B、矩阵A的迹为零
C、特征值-1,1对应的特征向量正交
D、方程组AX=0的基础解系含有一个线性无关的解向量
答案
C
解析
由λ
1
=-1,λ
2
=0,λ
3
=1得|A|=0,则r(A)<3,即A不可逆,(A)正确;
又λ
1
+λ
2
+λ
3
=tr(A)=0,所以(B)正确;
因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;
(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/ley4777K
0
考研数学二
相关试题推荐
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
=_________.
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设A为三阶正交阵,且|A|<0,|B-A|=-4,则|E-ABT|=________.
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设a1,a2...an为n个n维向量,证明:a1,a2,...an线性无关的充分必要条件是任一n维向量总可由a1,a2...an线性表示。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
随机试题
下列证据中,既属于直接证据又属于原始证据的有哪些?()
跨国公司主要在产品各要素诸如功能、质量、外观等方面和营销方式、策略上形成企业特有的与竞争对手不同的风格,从而树立能为顾客所识别的市场形象和竞争优势。这种市场竞争战略是()
男,45岁。有肺结核史,近1个月来咳嗽、低热,痰中带血,胸片示:左肺上叶不张。若需手术治疗,最佳的手术方式为
下列不是麻醉前用药目的的是( )
工程咨询协承担工程咨询行业()的具体工作。
材料一:“多干多错,少干少错,不干不错”“为了不出事,宁愿不干事”,近年来,在全面从严治党新形势下,这种“为官不为”的消极心理在干部队伍中有滋生蔓延之势。由于心存顾虑、不敢担当,一些干部在改革创新路上步履迟缓,甚至止步不前。“保持锐意创新的勇气、
根据所给图表、文字资料回答81-85题。2008年,全国民政事业基本建设完成投资总额为66.6亿元,施工项目为3906个,完成投资总额比上年增长39.6%。其中国家投资26.6亿元,比上年增长83.4%。在投资总额中,用于优抚安置事业单位投资为9.
义务教育的特征不包括
漏壶是我国古代用来计量()的工具。
已知某汉字的区位码是1221,则其国标码是
最新回复
(
0
)