首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2016-05-31
71
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=α
1
得A
2
α
1
=A
3
α
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=-2α
1
,即α
1
是矩阵B的属于特征值-2的特征向量。 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即[*] 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lQT4777K
0
考研数学三
相关试题推荐
孙中山等革命党人为维护资产阶级民主革命成果进行的斗争有()。
1904年,孙中山发表《中国问题的真解决》一文,指出只有推翻清朝政府的统治,“以一个新的、开明的、进步的政府来代替旧政府”,“把过时的满清君主政体改变为‘中华民国’”,才能真正解决中国问题。这表明以孙中山为首的资产阶级革命派在踏上革命道路之时,就高举起民主
1842年,开放广州、厦门、福州、宁波、上海为通商口岸的条约是()。
科技创新始于技术、成于资本,这是近几十年全球科技创新一个突出的特征。科技创新创业的风险特征不同于成熟型产业经济行为,必须高度依赖资本,因为靠自身的积累和银行贷款往往是不现实的。而货币资本作为虚拟资本是每个企业的推动力和持续动力。货币资本是(
国歌被誉为国家的第一声音,需要每一个公民用心去呵护。十二届全国人大常委会第二十八次会议对国歌法草案进行了初审。草案明确了七类应当奏唱国歌的场合,明确了国歌奏唱的礼仪,同时规定了不得在私人丧事活动等不适宜的场合奏唱、播放国歌等负面清单,及相应的处罚措施,这一
经济政治发展的不平衡是资本主义的绝对规律,由此得出结论:社会主义可能首先在少数或者甚至在单独一个资本主义国家内获得胜利。提出这一著名论断的是()。
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
求下列参数方程所确定的函数的二阶导数d2y/dx2.设f〞(t)存在且不为零.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:A2.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
随机试题
上肢自由骨的连结包括肩关节、肘关节、桡尺连结、手关节。()
小脑上动脉综合征
下列属于真核生物基因组结构中的中度重复序列的有
患者,男,59岁。咳喘20余年,现咳嗽痰少,口燥咽干,形体消瘦,腰膝酸软,颧红盗汗,舌红少苔,脉细数。其病机是
根据我国《城市房地产管理法》的规定,下列关于城市房地产交易的表述中正确的是()。
首次公开发行股票时,如发行人发行过内部职工股,招股说明书应披露内部职工股的( )。
能为几代入所激赏的文学名著,给影视剧改编者留下的再创造的天地就变得________得多。对于已经定型、成熟的著名剧作,试图用当代入的意志、观念和情趣去作出“新的解释”,便是超越了“再创造”的界限,________,是不宜提倡的。填入画横线部分是最恰当的一项
1956年苏共二十大以后,毛泽东提出要“以苏为鉴”,探索自己的建设道路。这句话表明中国共产党()
Whowillspeakatthemeeting?
WhichofthefollowingsentencesisaCOMPLAINT?
最新回复
(
0
)