首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2019-08-21
48
问题
下列命题正确的是( ).
选项
A、f(x)在点x
0
连续的充要条件是f(x)在点x
0
可导
B、若fˊ(x)=x
2
(偶函数),则f(x)必是奇函数
C、若
(常数),则fˊ(0)=a
D、若
,则fˊ(0)=-1
答案
D
解析
由连续、可导及奇偶性定义便可得结论.
解:由导数定义知
故应选(D).
错例分析:有的学生选择(B)选项,这是不对的.如取fˊ(x)=1+cos x.则
令C=1,则f(x)=x+sin x+1,显然fˊ(x)=1+cos x是偶函数,但f(x)=x+sin x+1不是奇函数.还有的同学选(A)项,也是错误的,如取f(x)=|x|,则f(x)在x
0
=0处连续.但由于fˊ
-
(0)=-1≠1=fˊ
+
(0),所以fˊ(0)不存在,即f(x)在x
0
=0处不可导.选择(C)项同样是错误的,因为不知道f(0)的值就不可能求出fˊ(0).
转载请注明原文地址:https://www.kaotiyun.com/show/lKN4777K
0
考研数学二
相关试题推荐
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
已知问λ取何值时,β可由α1,α2,α3线性表出,且表达式唯一;
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向z轴负向无限伸展的平面图形记为D.求:(I)D的面积A;(Ⅱ)D绕直线X=1旋转一周所成的旋转体的体积V.
随机试题
用人体秤测量人的体重使用的是____________。
为明确诊断,首选检查检查发现肝内胆管扩张,肝总管直径为2cm,左右肝管均有结石,胆囊不肿大,选用的手术方式是
一个长方体形状的盒子长、宽、高分别为20厘米、8厘米和2厘米,现在要用一张纸将其六个面完全包裹起来,要求从纸上剪下的部分不得用作贴补,请问这张纸的大小可能是下列哪一项?()
工程咨询对比法中,横向对比是将同一行业类似项目在()等方面的指标进行比较。
根据《公司法》规定,下列选项中不可发行公司债券的有()。
甲公司2015年11月1日开具了带息商业承兑汇票,此汇票的面值为200万元,年利率为6%,期限为6个月。2015年12月31日甲公司“应付票据”的账面价值为()万元。
最根本的主体与客体的关系是()
已知α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,一1,a+2,1),α4=(1,2,4,a+8)及β=(1,1,b+3,5).(1)a、b为何值时,β不能表示成α1,α2,α3,α4的线性组合?(2)a、b为何值时,
TennisDuringthefirst50yearsofitshistory,tenniswaslargelyapastimeof【1】______【1】______people.Itsw
Justasthebuilderisskilledinthehandlingofhisbricks,______theexperiencedwriterisskilledinthehandlingofhiswor
最新回复
(
0
)