首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2019-08-21
59
问题
下列命题正确的是( ).
选项
A、f(x)在点x
0
连续的充要条件是f(x)在点x
0
可导
B、若fˊ(x)=x
2
(偶函数),则f(x)必是奇函数
C、若
(常数),则fˊ(0)=a
D、若
,则fˊ(0)=-1
答案
D
解析
由连续、可导及奇偶性定义便可得结论.
解:由导数定义知
故应选(D).
错例分析:有的学生选择(B)选项,这是不对的.如取fˊ(x)=1+cos x.则
令C=1,则f(x)=x+sin x+1,显然fˊ(x)=1+cos x是偶函数,但f(x)=x+sin x+1不是奇函数.还有的同学选(A)项,也是错误的,如取f(x)=|x|,则f(x)在x
0
=0处连续.但由于fˊ
-
(0)=-1≠1=fˊ
+
(0),所以fˊ(0)不存在,即f(x)在x
0
=0处不可导.选择(C)项同样是错误的,因为不知道f(0)的值就不可能求出fˊ(0).
转载请注明原文地址:https://www.kaotiyun.com/show/lKN4777K
0
考研数学二
相关试题推荐
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
如图3—4所示,设抛物线y=ax2+bx,当0≤x≤1时y≥0,若该抛物线与x轴以及直线x=1所围成的封闭图形的面积为,试求a,b的值,使此平面图形绕x轴旋转所得旋转体的体积最小.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:
求z=f(χ,y)满足:dz=2χdχ-4ydy且f(0,0)=5.(1)求f(χ,y).(2)求f(χ,y)在区域D={(χ,y)|χ2+4y2≤4}上的最小值和最大值.
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设x→a时,f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小;②若n>m,则是x一a的n一m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A。
随机试题
A、cloudyB、captainC、certainD、cottonCA、B、D三项划线部分发[k],C项划线部分发[s],因此选C项。
依据导热机理,水在()状态下的导热系数最大。
证券的风险性是指实际收益与预期收益的背离,或者说是证券收益的不确定性。()
作为社会工作三大直接服务方法之一的个案工作,其本质是( )。
社会自我基本成熟的时期是()
简述学生技能学习评价的主要方法。
创造性思维的特点有()。
人类要生存,首先必须满足各种需要。任何需要都是一定主体在一定的生产关系的基础上,在一定的客观条件下,对一定对象的需要,都必然通过一定的社会关系才能实现。因此,处理个人与他人的关系,关键是要处理好个人与他人的利益关系。促进个人与他人的和谐应坚持一系列原则。其
自2013年下半年开始,我国的经济运行中出现了一些新情况。原来比较“火爆”的房地产业开始降温。有的房地产企业因手头缺乏现金而遭遇了“钱荒”,使正常的生产经营活动难以为继。这种因“现金链断了”而造成企业经营出现困难的现象,表明()
Onaverage,Americankidsages3to12spent29hoursaweekinschool,eighthoursmorethantheydidin1981.Theyalsodidmo
最新回复
(
0
)