首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下三个命题, ①若数列{un}收敛于A,则其任意子数列{}必定收敛于A; ②若单调数列{xn}的某一子数列{}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A 正确
以下三个命题, ①若数列{un}收敛于A,则其任意子数列{}必定收敛于A; ②若单调数列{xn}的某一子数列{}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A 正确
admin
2019-08-12
84
问题
以下三个命题,
①若数列{u
n
}收敛于A,则其任意子数列{
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{
}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有|u
n
一A|<ε.
则当n
i
>N时,恒有 |
一A|<ε.
因此数列{
}也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}为单调增加的,即
x
1
≤x
2
≤…≤x
n
≤…,
其中某一给定子数列{
}收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有
|
—A|<ε.
由于数列{x
n
}为单调增加的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有
,
从而 |x
n
一A|<ε.
可知数列{x
n
}收敛于A因此命题正确.
对于命题③,因
=A,由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
:
当2n>N
1
时,恒有|x
2n
一A|<ε;
当2n+1>N
2
时,恒有| x
2n+1
一A|<ε.
取N=max{N
1
,N
2
),则当n>N时,总有|x
n
一A|<ε.因此
=A.可知命题正确.
故答案选择(D).
转载请注明原文地址:https://www.kaotiyun.com/show/l4N4777K
0
考研数学二
相关试题推荐
[*]
当x→0时,为x的三阶无穷小,则a,b分别为()
设f(x1,x2,…,xn)=XTAX是正定二次型.证明:举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=______________.
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是考ξTξ=1;(2)当ξTξ=1时,A不可逆.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3.写出二次型f的矩阵表达式;
求函数的间断点,并指出其类型。
设F(χ)=∫0χ(χ2-t2)f′(t)dt,其中f′(χ)在χ=0处连续,且当χ→0时,F′(χ)~χ2,则f′(0)=_______.
设N=∫-aax2sin3xdx,P=∫-aa(x3-1)dx,Q=∫-aacos2x3dx,a≥0,则()。
随机试题
由于环境污染对健康的直接损害不包括
男,30岁,重症感染患者,每天上午10点出现寒战、高热,已连续5天。疑有败血症,应做血培养。最佳抽血时间应在
符合甲状腺功能亢进症代谢串增高的表现是
里程碑清单是一种()安排方法。
我国目前规定,成年妇女禁忌参加连续负重,禁忌每次负重重量超过()kg,间断负重每次重量超过()kg的作业。
关于现金的清查,下列说法不正确的是()。
在刑事诉讼中,公安机关负责对刑事案件的预审。()
《红楼梦》第十四回讲到王熙凤协理宁国府,凤姐年纪轻轻,却能依靠“奖罚分明”把宁国府管理得井井有条。从管理学上看,王熙凤管理宁国府主要基于:
信度与效度相当于()
Java语言中,调用方法时,参数传递是【】调用,而不是地址调用。
最新回复
(
0
)