首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
设A是秩为3的4阶矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个解.若α1+α2+α3+=(0,6,3,9)T,2α2一α3=(1,3,3,3)T,k为任意常数,则Ax=b的通解为( )
admin
2016-01-22
88
问题
设A是秩为3的4阶矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个解.若α
1
+α
2
+α
3
+=(0,6,3,9)
T
,2α
2
一α
3
=(1,3,3,3)
T
,k为任意常数,则Ax=b的通解为( )
选项
A、(0,6,3,9)
T
+k(1,1,2,0)
T
B、(0,2,1,3)
T
+k(一1,3,0,6)
T
C、(1.3.3,3)
T
+k(1,1,2,0)
T
D、(一1,3,0,6)
T
+k(一2,0,一3,0)
T
答案
C
解析
本题考查非齐次线性方程组解的结构,属于基础题.
由r(A)=3,知齐次方程组Ax=0的基础解系只有一个解向量.
由非齐次线性方程组解的性质,知
(α
1
+α
2
+α
3
)一3(2α
2
一α
3
)=(α
1
一α
2
)+4(α
3
一α
2
)=(一3,一3,一6,0)
T
是Ax=0的解,所以Ax=0的基础解系为(1,1,2,0)
T
.
又
2α
2
一α
3
=α
2
+(α
2
一α
3
)=(1,3,3,3)
T
是Ax=b的解,所以Ax=b的通解为(1,3,3,3)
T
+k(1,1,2,0)
T
,故应选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/kxw4777K
0
考研数学一
相关试题推荐
设α1,α2,α3,…,αn是n个n维列向量,证明:α1,α2,α3,…,αn线性无关的充分必要条件是
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在。写出f(x)的带拉格朗日余项的麦克劳林公式。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点。写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式。
设f(x)为连续函数,计算,其中D是由y=x3,y=1,x=-1围成的区域。
设A为n阶非奇异矩阵,α是n维列向量,b为常数,.证明PQ可逆的充分必要条件是αTA-1α≠b.
设f(x,y)在有界区域D上二阶连续可偏导,且在区域D内恒有条件,,则()。
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D,若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积。
设函数f(x)在区间[-1,1]上连续,则x=0是函数的().
求函数y=(x-1)的单调区间与极值,并求该曲线的渐近线.
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0.(I)求f(x)在区间[0,3π/2]上的平均值;(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
随机试题
志贺氏菌分解葡萄糖产酸不产气。
阵发性心房纤颤是指房颤持续时间
关于证券市场线,下列说法错误的是( )。
商业银行是以()为经营对象的信用中介机构。
什么是课程?课程在学习教育中的作用是什么?
党的思想建设的根本任务是()。
城市建设与发展过程中如果规划不当,到了炎热的夏天往往会出现热岛效应。下列有关热岛效应的表述不正确的是()。
在资本主义社会中,工人工资的两种基本形式是( )
设随机变量向量组α1,α2线性无关,则Xα1一α2,一α1+Xα2线性相关的概率为().
关于Windows 98设备管理的基本任务,说法不正确的是
最新回复
(
0
)