首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2021-11-09
96
问题
设向量组α
1
,α
2
,…,α
t
是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
设有一组数k,k
1
,k
2
,…,k
t
使得 [*] 把(1)式两边左乘以A,有 [*] 因为Aβ≠0,故 [*] 因而,由(1)式,得 [*] 即[*].再由于α
1
,α
2
,…,α
t
是方程组Ax=0的一个基础解系,所以该向量组α
1
,α
2
,…,α
t
线性无关,从而有k
1
=k
2
=…=k
t
=0;再由(2)可知k=0.因此,向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
本题考查向量组线性相关的概念和如何利用线性方程组证明向量组的线性相关性.
转载请注明原文地址:https://www.kaotiyun.com/show/kvy4777K
0
考研数学二
相关试题推荐
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c
设函数其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续。
设函数f(x)在x=1处的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性。
求由与x轴所围成的区域绕y=2旋转一周而成的几何体的体积。
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,,则()。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设动点P(x,y)在曲线9y2=4x2上运动,且坐标轴的单位长度是1cm如果P点横坐标移动的速率是30cm/s,则当P点过点(3,4)时,从原点到P点的距离r的变化率为__________。
设随机变量X与Y相互独立,且X~N(0,1),Y具有分布律P(Y=0)=P(Y=1)=1/2,记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为().
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
当x→1时,函数的极限()
随机试题
Thebeliefoftheeighteenth-centuryneoclassicistsinEnglandledthemtoseekthefollowingEXCEPT______.
下列哪项不是肠蛔虫堵塞的临床表现
恙虫病立克次体在自然界的储存宿主主要为
如下哪项是胸痹的名称最早记载的著作
自由活动时,幼儿三五成群地在沙坑里玩耍,只有杰杰孤零零地站在旁边,一动不动。对此,老师恰当的做法是()。
从下列选项中,选出最合适的一个填入问号处,能使之呈现一定规律性()。
刑法规定,适用“可以减轻或者免除处罚”的法定情节有()。
党在过渡时期总路线的主要内容被概括为“一化三改”,其中“一化”是指()
计算机操作系统的主要功能是()。
Thelongyearsoffoodshortageinthiscountryhavesuddenlygivenwaytoapparentabundance.Storesandshopsarechokedwith
最新回复
(
0
)