首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 求这个方程和它的通解;
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 求这个方程和它的通解;
admin
2014-02-06
92
问题
已知y(x)=xe
-x
+e—h,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y
’’
+py
’
+qy=f(x)的三个特解.
求这个方程和它的通解;
选项
答案
由线性方程解的叠加原理→y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是相应的特征方程为(λ+2)
2
=0,即λ
2
+4λ+4=0,原方程为y
2
+4y
2
+4y=f(x).(*)又y
*
(x)=xe
-x
是它的特解,求导得y
*’
(x)=e
-x
(1一x),y
*’’
(x)=e
-x
(x一2).代入方程(*)得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x)→f(x)=(x+2)e
-x
→所求方程为y
’’
+4y
’
+4y=(x+2)e
-x
,其通解为y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kk54777K
0
考研数学一
相关试题推荐
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33.求可逆矩阵P,使得P-1AP为对角矩阵.
求下列微分方程满足初始条件的特解:
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)利用第一问的结论计算定积分
已知极限,试确定常数n和c的值.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设区域D是由y=x,x2+y2=2x,x轴所围成的第一象限的部分,求:(Ⅰ)区域D绕x轴旋转所得旋转体的体积;(Ⅱ)区域D绕x=2旋转所得旋转体的体积.
设区域D由x2+y2≤2x与y≥x所围成,(Ⅰ)求区域D绕x轴旋转一周所得的表面积;(Ⅱ)D绕y轴旋转一周所得的几何体盛满水,将水从顶部抽出,做功几何?
设函数f(x)在区间[0,1]上二阶可导,f(0)=0,且f(1)=1,证明:存在ζ∈(0,1),使得ζf"(ζ)+(1+ζ)f’(ζ)=1+ζ.
设函数z=x(x,y)具有二阶连续导数,变量代换u=ax+y,v=x+by把方程化为求ab。
设函数y=y(x)由参数方程所确定,求:
随机试题
党的十五大提出的突出问题是()
具有重镇安神功效的方子是
辐射诱发肿瘤是
A.雷登B.豪斯菲尔德C.曼斯菲尔德D.傅立叶E.爱迪生CT图像重建理论来源于哪位奥地利数学家的理论
考虑风吸力的荷载组合时,永久荷载的分项系数为:
某经纬仪的型号为DJ2,其中“2”的含义是()。
下列选项中,不属于固定顶储罐的是()。
下列关于固定资产的表述中,正确的有()。
中小企业实力较弱,在经营中要求把有限的资源和力量,投入到一个确定的目标市场上。中小企业实施的这一战略,称为()。
存在主义社会工作在实践中强调( )。
最新回复
(
0
)