首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
admin
2019-01-14
52
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
一α
2
)
答案
D
解析
因为通解中必有任意常数,显见A不正确.由n~r(A)=1知Ax=0的基础解系由一个非零向量构成α
1
,α
1
+α
2
与α
1
一α
2
中哪一个一定是非零向量呢?已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果α
1
=一α
2
≠0,则α
1
,α
2
是两个不同的解,但α
1
+α
2
=0,即两个不同的解不能保证α
1
+α
2
≠0.因此要排除B、C.由于α
1
≠α
2
必有α
1
一α
2
≠0.可见D正确.
转载请注明原文地址:https://www.kaotiyun.com/show/kjM4777K
0
考研数学一
相关试题推荐
A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2所对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β0=(2,-5a,2a+1)T.试求a及λ0的
设A为n阶方阵,B为n阶可逆方阵,且AB=BA,证明:若A有n个不同的特征值,α是A的特征向量,则α也是A的特征向量.
设A为n阶实对称矩阵,其秩为r(A)=r.举一个三阶矩阵说明对非对称矩阵上述命题不正确.
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明:若(k1,k2,…,kn)T是Ax=B的任一解,则kn=1.
函数f(x)=(x2一x一2)|x3一x|的不可导点有
求曲线的渐近线方程.
设数列{nan}收敛,级数n(an一an-1)收敛(不妨设其中a0=0),证明:级数收敛.
设f(x,y,z)在ΩR={(x,y,z)|x2+y2+z2≤R2}连续,又f(0,0,0)≠0,则R→0时,是R的_____阶无穷小.
(2001年)设则
设则f(x,y)在点O(0,0)处
随机试题
寒邪的性质和致病特征是
冠状动脉发生粥样硬化易患因素或危险因素中下列哪项不妥
按照《非处方药专有标识管理规定(暂行)》对非处方药专有标识的使用,错误的是()。
五根等长的无重量直杆铰接成杆系结构,杆BD所受力的大小等于( )。
下列关于电力起爆的规定正确的有()。
下列民事行为中,公司的清算组织不能从事的是()。
我同是一个团结统一的多民族同家,构建和谐的民族关系对我国意义重大。正确解决民族问题的基本原则是()。
设平面π1:3x一2y+6z一2=0与平面π2:3x一2y+6z+12=0,则两平行平面之间的距离为_________.
在SQLSELECT语句的ORDERBY短语中如果指定了多个字段,则
A1999reportbytheUniversityofMichiganshowedthatabout62percentofhighschoolstudentsreportedhavinggottendrunk.
最新回复
(
0
)