首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2 +(b1x1+b2x2+b3x3)2 , 记α=,β= 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12 +y22
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2 +(b1x1+b2x2+b3x3)2 , 记α=,β= 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12 +y22
admin
2013-05-13
63
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记α=
,β=
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
选项
答案
记A=2αα
T
+ββ
T
,由于α,β正交,则有α
T
β=β
T
α=0,又α,β为单位向量,则‖α‖=1,于是α
T
α=1,同理β
T
β=1。 因为r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)≤2<3,所以,|A|=0,故0是A的特征值。 因为Aα=(2αα
T
+ββ
T
)α=2α,所以2是A的特征值。 因为Aβ=(2αα
T
+ββ
T
)β=β,所以1是A的特征值。 于是A的特征值为2,1,0。 因此f在正交变换下可化为标准行2y
1
2
+y
2
2
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kX54777K
0
考研数学一
相关试题推荐
设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(I)=2,则g(1)等于
(04年)设函数f(x)连续。且f’(0)>0,则存在δ>0,使得
设函数y=f(x)是微分方程y"一2y’+4y=0的一个解,且f(x0)>0,f’(x0)=0,则f(x)在x0处
(2005年试题,二)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
(2009年)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为【】
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
[2010年]设函数y=f(x)由参数方程(t>一1)所确定,其中Ψ(t)具有二阶导数,且Ψ(1)=5/2,Ψ′(1)=6.已知,求函数Ψ(t).
若二次型f(x1,x2,x3)=2x21+x22+x23+2x1x2+tx2x3正定,则t的取值范围是_______________.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设函数f(x)=ax-b㏑x(a>0)有两个零点,则b/a的取值范围是()
随机试题
2015年6月2日,甲公司与乙公司订立合同约定,甲公司向乙公司交付20台电脑,乙公司向甲公司交付20万元。7月2日,甲公司请求乙公司支付20万元,但乙公司以合同并未约定履行顺序为由拒绝支付20万元,除非甲公司交付20台电脑。甲公司急于周转资金,便于7月6日
阴虚感冒的代表方剂是
慢性骨髓炎的手术治疗目的,下列哪些正确
依据《安全生产法》和有关法律、行政法规的规定,行政处分不包括()。
班会一般有三类,即常规班会、生活班会和主题班会。()
人们大都认为,科学家的思维都是凭借严格的逻辑推理,而不是凭借类比、直觉、顿悟等形象思维手段。但研究表明,诺贝尔奖获得者比一般科学家更多地利用这些形象思维手段,因此,形象思维手段有助于取得重大的科学突破。以上结论是建立在以下哪项假设基础上的?()
设X在[0,2π]上服从均匀分布,求Y=cosX的密度函数.
Duringthe1980s,unemploymentandunderemploymentinsomecountrieswasashighas90percent.Somecountriesdidnot【21】_____
•YouwillhearthespeechoftheManagingDirectoroftheInternationalMonetaryFundatthepressconference.•Asyoulisten,f
ThesentenceIwishIhadbeenmorecarefulinspendingmoneyexpressesthespeaker’s______.
最新回复
(
0
)