首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
admin
2018-06-30
122
问题
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
选项
A、当f’(x)≥0时,f(x)≥g(x)
B、当f’(x)≥0时,f(x)≤g(x)
C、当f"(x)≥0时,f(x)≥g(x)
D、当f"(x)≥0时,f(x)≤g(x)
答案
D
解析
解1 由于g(0)=f’(0),g(1)=f(1),则直线y=f(0)(1一x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1一x)+f(1)x的下方,即
f(x)≤g(x)
故应选(D)).
解2 令F(x)=f(x)一g(x)=f(x)一f(0)(1—x)一f(1)x,则
F’(x)=f’(x)+f(0)一f(1),f"(x)=f"(x).
当f"(x)≥0时,F"(x)≥0.则曲线y=F(x)在区间[0,1]上是凹的,又F(0)=F(1)=0,
从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
解3 令F(x)=f(x)一g(x)=f(x)一f(0)(1一x)一f(1)x,则
F(x)=f(x)[(1一x)+x]一f(0)(1一x)一f(1)x
=(1一x)[f(x)一f(0)]一x[f(1)一f(x)]
=x(1一x)f’(ξ)一x(1一x)f’(η) (ξ∈(0,x)。η∈(x,1))
=x(1一x)[f’(ξ)一f’(η)]
当f"(x)≥0时,f’(x)单调增,f’(ξ)≤f’(η).从而,当x∈[0,1]时F(x)≤0,即
f(x)≤g(x),故应选(D).
转载请注明原文地址:https://www.kaotiyun.com/show/kRg4777K
0
考研数学一
相关试题推荐
设D为xOy平面上由摆线x=a(t-sint),y=a(1-cost),0≤t≤2π,与x轴所围成的区域,求D的形心的坐标
设函数f(x),g(x)在[a,b]上连续且单调增,证明:
设m和n为正整数,a>0,且为常数,则下列说法不正确的是()
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
(87年)设则在x=a处
设则在实数域上与A合同的矩阵为
设则y’=_______
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
(1998年)求
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
随机试题
甲公司为境内上市公司,2×21年,甲公司发生的企业合并及相关交易或事项如下:(1)2×21年2月20日,甲公司召开董事会,审议通过了以定向增发普通股股票,并辅以支付银行存款作为支付对价,购买乙公司80%股权的议案。2×21年3月10日,甲公司、乙公司及其控
短暂性脑缺血发作的临床特征中不应出现()
佝偻病激期最主要的临床特点是()
下列说法中不正确的是()。
某高速公路设计车速120km/h,路面面层为三层式沥青混凝土结构。施工企业为公路交通大型企业专业施工队伍,设施精良。为保证工程施工质量,防治沥青路面施工中沥青混合料摊铺时发生离析、沥青混凝土路面压实度不够、平整度及接缝明显,施工单位在施工准备、沥青混合料的
填制记账凭证时无误,根据记账凭证登记账簿时,将10000元误记为1000元,已登记入账,更正时应采用()。
关于生产关系的叙述,正确的是()。
下列项目中,免征土地增值税的是()。
假定变量x为int类型,请以最简单的形式写出与逻辑表达式!x等价的C语言关系表达式【】。
Thelifepaceinbigcitiesrequirespeopletobeabletotravelefficientlyfromoneplacetoanother.Somepeopleseemtothin
最新回复
(
0
)