首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2018-12-29
39
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
1
,…,α
s
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,故α
1
,α
2
,…,α
s
线性无关,A项正确。
对于选项B,由α
1
,α
2
,…,α
s
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+ … +x
s
α
s
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此B项是错误的。
C项是教材中的定理。
由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知D项也是正确的。
综上可知,故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/kFM4777K
0
考研数学一
相关试题推荐
(87年)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)区间内有且仅有一个x,使得f(x)=x.
(09年)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记.求S1与S2的值.
(06年)将函数展开成x的幂级数.
(10年)设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵.若AB=E,则
(2005)以下四个命题中,正确的是()
设f(x,y)为连续函数,且f(x,y)=xy+f(u,v)dudv,其中D是由直线y=0,x=1与曲线y=x2围成的平面区域,则f(x,y)dxdy=_________.
设平面区域D由直线x=1,y=及曲线x2+y2=1围成,则二重积分f(x,y)dxdy在极坐标下的二次积分为______.
已知{an)是单调增加且有界的正数列,证明:级数收敛.
设L:y=sinx(0≤x≤),由x=0,L及y=sint围成的区域面积为S1(t);由L、y=sint及x=围成的区域面积为S2(t),其中0≤t≤.t取何值时,S(t)取最小值?t取何值时,S(t)取最大值?
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且f’(x)=M.证明:f’(x0)=M.
随机试题
不是性激素治疗(HT)绝对禁忌证的是
简述同一社会制度的不同国家和同一国家的不同历史阶段实行不同经济体制的原因。
LiamworksinSydney.Lastmonthhehad【C1】______holiday,buthedidn’tknow【C2】______togo.HesaidtohisfriendRobert,"I
某男,67岁。心前区疼痛不止,突然昏迷,呼吸困难,现场进行PCR急救。常见的并发症是
人体内密度最低的组织是
患者,女性,34岁,夏日受凉,症见头痛恶寒,身重疼痛,面色淡黄,午后身热,胸闷不饥,苔白不渴,脉濡者。治宜选用
犯罪故意
设随机变量X的分布函数为F(x)=则数学期望E(X)等于()。
根据法律的规定,公民有下列情况的,利害关系人可以向人民法院申请宣告他死亡()。
下列程序的输出结果是()。#include<stdio.h>voidmain(){inta=0,b=1,C=2;if(++a>0||++b>0)++c;printf("%d,%d,%d",a,b,C);}
最新回复
(
0
)