首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,则( )
设A是m×n矩阵,B是n×m矩阵,则( )
admin
2019-07-12
56
问题
设A是m×n矩阵,B是n×m矩阵,则( )
选项
A、当m>n时,|AB|≠0.
B、当m>n时,|AB|=0.
C、当n>m时,|AB|≠0.
D、当n>m时,|AB|=0.
答案
B
解析
本题考察AB的行列式|AB|,而条件显然是不能用来计算|AB|.而利用方阵“可逆
满秩”,转化为“r(AB)是否=AB的阶数m”的判断则是可行的.
有不等式
r(AB)≤min{r(A),r(B)}≤min{m,n}.
如果m>n,则
r(AB)≤min{r(A),r(B)}≤min{m,n}=n<m.
于是r(AB)<m,从而AB不可逆,|AB|=0.因此(B)成立.
(如果m<n,r(AB)≤min{r(A),F(B)}≤min{m,n}=m.不能断定r(AB)与m的关系,C,D都不一定成立.)
转载请注明原文地址:https://www.kaotiyun.com/show/k3J4777K
0
考研数学三
相关试题推荐
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。(I)证明存在η∈(0,2),使f(η)=f(0);(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2008年)设f(x)是周期为2的连续函数。(I)证明对任意实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数。
(2005年)微分方程xy’+y=0满足初始条件y(1)=2的特解为_______。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明二次型f在正交变化下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=xTAx=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12。(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对
设n阶矩阵A=。(Ⅰ)求A的特征值和特征向量;(Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵。
设A=,a,b为何值时,存在矩阵C,使得AC一CA=B,并求所有矩阵C。
设矩阵A=,则()
矩阵相似的充分必要条件为()
设则a=______.
随机试题
Shemade______totellhermotherthegoodnews.
用治阴暑的药物是
进口钢材,除常规检测项目外,还需做的检测项目有()。
承包人向发包人索赔时,所提交索赔文件的主要内容包括()。
2,6,15,28,(),78
下列几组商品的交叉价格弹性为负的有()。
一个教师可讲授多门课程,一门课程可由多个教师讲授。则实体教师和课程间的联系是()。
下列定义中p指向的地址可更改,但*p不能够更改的是
MarthaGraham’sterritoryofinnumerabledancesandaself-sufficientdancetechniqueisavastbutclosedterritory,sincetoc
Morethanamonthafterthedeadlineforcityrestaurantstostoppreparingfoodwithartificialtransfat,somefast-foodchain
最新回复
(
0
)