首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
70
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
曲线在点(0,0)处的切线方程为_____.
设f(x)=∫-1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积.
求二元函数F(x,y)=xye一(x2)+y2在区域D={x,y)|x≥0,y≥0}上的最大值与最小值.
设X,Y,Z是三个两两不相关的随机变量,数学期望全为零,方差都是1,求X-Y和Y-Z的相关系数.
(2008年)已知f(x,y)=则()
(2017年)若函数在x=0处连续,则()
(2017年)设a0=1,a1=0,的和函数.(Ⅰ)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
(2017年)二元函数z=xy(3一x—y)的极值点是()
随机试题
In1786acallwentouttoallthestatesinvitingthemtosenddelegatestoameetingtobeheldinPhiladelphiainthespring
王一、张二、李四成立了某有限责任公司,后王五、郑七、周八加入成为股东。以下关于该公司成立和运作过程中发生的如下问题,请正确作出选择。公司设置了相关机构,下列为有关公司高级管理人员的既往履历,其任职符合《公司法》规定的是:()
代收代缴,是指按照税法规定,负有扣缴税款义务的法定义务人,在向纳税人支付款项时,从所支付的款项中直接扣收税款的方式。()
出境、入境边防检查工作由公安部主管。()
“明天下雨,比赛取消,如果比赛取消,我就再没有参赛的机会了”,这是()。
下列城市中,属于我国最早建立的四个经济特区之一的有()。
TradeUnions1Somescholarshaveassociatedtradeunionswiththemedievalcraftguilds(中世纪的行会),butthereareimportantdiffe
______English,sheisstudyingJapaneseandFrench.
A、Before10:00am.B、Atnoon.C、About6:00pm.D、At8:30pm.C
TheFutureofTelevision:What’sonNext?BossesinthetelevisionindustryhavebeenkeepinganervouseyeontwoScandinav
最新回复
(
0
)