首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=。 (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵。
设n阶矩阵A=。 (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵。
admin
2018-04-18
75
问题
设n阶矩阵A=
。
(Ⅰ)求A的特征值和特征向量;
(Ⅱ)求可逆矩阵P,使得P
-1
AP为对角矩阵。
选项
答案
(Ⅰ)①当b≠0时, [*] =[λ一1一(n一1)b-][λ一(1—b)]
n-1
, 得A的特征值为λ
1
=1+(n—1)b,λ
2
=…=λ
n
=1一b。 对λ
1
=1+(n—1)b,有 [*] 解得ξ
1
=(1,1,1,…,1)
T
,所以A的属于λ
1
的全部特征向量为kξ
1
=k(1,1,1,…,1)
T
(k为任意不为零的常数)。 对λ
2
=1一b,有 λ
2
E—A=[*], 得基础解系为 ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
3
=(1,0,0,…,0,一1)
T
。 故A的属于λ
1
的全部特征向量为k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
(k
1
,k
2
,…,k
n
是不全为零的常数)。 ②当b=0时, |λE一A|=[*]=(λ一1)
n
, 特征值为λ
1
=…=λ
n
=1,任意非零列向量均为特征向量。 (Ⅱ)①当b≠0时,A有n个线性无关的特征向量,令P=(ξ
1
,ξ
2
,…,ξ
n
),则 P
-1
AP=[*]。 ②当b=0时,A=E,对任意可逆矩阵P,均有P
-1
AP=E。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ypX4777K
0
考研数学三
相关试题推荐
设函数f(x)在x=0处二阶可导,且满足求f(0),f’(0)与f”(0).
证明函数恒等式,arctanx=x∈(一1,1).
已知矩阵A相似于B.A*为A的伴随矩阵,则|A*+3E|=________.
下列矩阵中不相似于对角矩阵的是
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
设f(x)连续,f(0)=1,则曲线∫0xf(x)dx在(0,0)处的切线方程是__________.
设随机变量U在[-2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y)].
设总体X和Y相互独立,且分别服从正态分布N(0,4)和N(0,7),X1,X2,…,X8和Y1,Y2,…,Y14分别来自总体X和Y的简单随机样本,则统计量的数学期望和方差分别为________.
求函数z=x2y(4-x-y)在由直线x+y=6,x轴和y轴所围成的区域D上的最大值与最小值.
随机试题
气焊的中性焰分为内焰、外焰和焰心,其中,内焰温度最高。
“文化大革命”的导火线是()
风湿性心脏病最常侵犯的瓣膜是()。
A.银翘散B.桂枝汤C.桑菊饮D.麻黄汤E.败毒散以疏风清热、宣肺止咳为功用的方剂是
A.1个以上B.2个以上C.3个以上D.4个以上E.5个以上镜下血尿是指离心沉淀后的尿沉渣在每高倍视野中见到的红细胞为()
事故应急救援的目标是尽可能减少人员伤亡和财产损失。下列选项中,不属于事故应急救援基本任务的是______。
火灾场景的确定应根据()原则确定。
公司发行记名股票的,应当置备股东名册,记载()事项。
ThesuccessofAugustusowedmuchtothecharacterofRomantheorizingaboutthestate.TheRomansdidnotproduceambitiousblu
ThanksgivingDayTheAmericanThanksgivingDaycelebrationgoesbackto1621.Inthatyear,aspecialdinnerwaspreparedin
最新回复
(
0
)