首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
[2010年] 求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
admin
2019-03-30
81
问题
[2010年] 求函数u=xy+2yz在约束条件x
2
+y
2
+z
2
=10下的最大值和最小值.
选项
答案
解一 用拉格朗日乘数法求之.令F(x,y,z)=xy+2yz+λ(x
2
+y
2
+z
2
-10).且令 [*] 由式①、式③分别得λ=-y/(2x),λ=-y/z,故 y/(2x)=y/z, 即 z=2x. ⑤ 将式⑤代入式②得到 5x+2λy=0, 即 λ=-5x/(2y) (y≠0). ⑥ 由式⑥和λ=-y/(2x)得到 λ=-5x/(2y)=-y/(2x), 即 5x
2
=y
2
. ⑦ 将式⑤、式⑦代入式④,得到10x
2
=10,即x
2
=1,x=±1. 当x=1时,z=2,[*]当x=-1时,z=-2,[*] 令y=0,由式②、式④得到x=-2z,4z
2
+z
2
=5z
2
=10.即[*]故[*]也是可能极值点. 综上所述,得到可能的极值点有[*] 比较u在各点处的值可知,在点[*]处取得最大值,最大值为[*]在点[*]处取得最小值,最小值为[*]故所求函数u的最大值和最小值分别为[*] 解二 由方程x
2
+y
2
+z
2
=10可确定z是x,y的函数,代入目标函数,得u为x,y的二元函数. 令[*] 在x
2
+y
2
+z
2
=10两边对x,y求导,得到[*]将其代入上式并联立方程④,有 [*] 解上述方程组,得到可能的最值点为 [*] 比较u的各点函数值得到[*]为最大值,[*]为最小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jaP4777K
0
考研数学三
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是α2A—1α≠b。
设向量组(Ⅰ):b1,…,br,能由向量组(Ⅱ):α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设f(x,y)=,讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
(1)设y=y(x)由方程ey+6xy+x2-1=0确定,求y’’(0).(2)设y=y(x)是由exy-x+y-2=0确定的隐函数,求y’’(0).
设连续函数f(x)满足f(x)=,则f(x)=______.
设f(u)可导,y=f(x2)在x0=-1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=______.
设函数f(x)在[0,1]上连续,且f(x)>0,则=______.
设f(x)二阶可导,f(0)=0,令g(x)=(1)求g’(x);(2)讨论g’(x)在x=0处的连续性.
随机试题
疳气的治则是干疳的治则是
白芷的主产地为
治疗咳嗽的非处方药A、可待因B、喷托维林C、右美沙芬D、苯丙哌林E、右美沙芬复方制剂剧咳或白日咳嗽
根据《政府采购货物和服务招标投标管理办法》的规定,对投标文件中的资格证明、投标保证金等进行审查,以确定投标供应商是否具备投标资格的为()。
国有土地使用权交易要注意()。
某建筑企业,企业经理为法定代表人,没有现场安全生产管理负责人。该企业在其注册地的某项施工过程中,甲班队长在指挥组装塔吊时没有严格按规定把塔吊吊臂的防滑板装入燕尾槽中并用螺栓固定。某日甲班作业过程中发生吊臂防滑板开焊、吊臂折断脱落事故,造成3人死亡、1人重伤
角色扮演法
对于属于本级职责范围内的信访案件,立案机关应()。
下列关于宽带城域网汇聚层基本功能的描述中,错误的是()。
下列叙述中,正确的是()。
最新回复
(
0
)