首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设ai=[ai1,ai2,ain]T(i=l,2,…,r;r<n)是n维实向量,且α1,α2,…,αr,线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2019-05-10
92
问题
设a
i
=[a
i1
,a
i2
,a
in
]
T
(i=l,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
,线性无关.已知β=[b
1
,b
2
,…,b
n
]
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设出k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0,要对此等式两边同时左乘β
T
恒等变形,证明k=0.再由α
1
,α
2
,…,α
r
线性无关,证明k
1
=k
2
=…=k
r
=0. 解一 因β是线性方程组AX=0的解,即Aβ=0,而A=[*],由Aβ=[*]β=0得 α
1
T
β=α
2
T
β=…=α
r
T
β=0,因而β
T
α
1
=β
T
α
2
=…=β
T
α
r
=0. 设 k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0. 左乘β
T
,利用β
T
α
i
=0(i=1,2,…,r)得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
+kβ
T
β=kβ
T
β=0, 但β≠0,所以β
T
β=b
1
2
+b
2
2
+…+b
n
2
>0,于是k=0.代入式①得k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0. 但α
1
,α
2
,…,α
r
线性无关,所以k
1
=k
2
=…=k
r
=0,故α
1
,α
2
,…,α
r
,β线性无关. 解二 反证法.若α
1
,α
2
,…,α
r
,β线性相关,则β=k
1
α
1
+k
2
α
2
+…+k
r
α
r
,于是β
T
β=k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
=0,从而β=0,这与β是非零解向量矛盾,故α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ijV4777K
0
考研数学二
相关试题推荐
设f(χ)在χ=a处二阶可导,证明=f〞(a).
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
随机试题
We’llvisitEuropenextyear______wehaveenoughmoney.
患者,男,50岁。诊断为肺癌。对此,护士妥当的做法是
饱和盐水浮聚法最适用于检查
川芎茶调散中,君药是川芎茶调散中,臣药是
在一项行政处罚决定作出后,即使处罚存在违法,但在处罚决定被撤销前仍应默认其合法有效,被处罚人也要按规定执行。这体现了行政行为具有()。
当我们在谈论创意的时候,大多会认为这没有什么规律可循,或者说,创意应该是________的。我们会说:如果给创意制定一个框架的话,可能会束缚创意,让创意变成________的工匠活。填入画横线部分最恰当的一项是()。
下述4个例子中,决定贸易模式的主要是比较优势还是规模经济?为什么?(1)加拿大是主要的新闻纸出口国;(2)英特尔生产世界上半数以上的CPU;(3)美国和日本相互出口小轿车;(4)中国是电视机的主要出口国。
对于业主的做法,你认为是否合适?并说明理由。在此过程中,最重要的监理工作内容是什么?并说明理由。
Geographyisthestudyoftherelationshipbetweenpeopleandtheland.Geographerscompareandcontrast【C1】______placesonthe
OnthemorningofMay90,1927,CharlesA.LindberghtookofffromamuddyairfieldinNewYorkandheadedforParis.Fourteenho
最新回复
(
0
)