首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知某二阶常系数线性非齐次微分方程的通解为 y=C1ex+C2e-x-cos2x, 则此微分方程为_________.
已知某二阶常系数线性非齐次微分方程的通解为 y=C1ex+C2e-x-cos2x, 则此微分方程为_________.
admin
2021-05-21
113
问题
已知某二阶常系数线性非齐次微分方程的通解为
y=C
1
e
x
+C
2
e
-x
-
cos2x,
则此微分方程为_________.
选项
答案
由通解可知,特征根λ
1
=1,λ
2
=一1.于是特征方程为 (λ-1)(λ+1)=λ
2
一1=0, 故对应的齐次方程为 y″一y=0. 该非齐次方程设为 y″一y=f(x), 其中f(x)为其非齐次项. 由其通解知 y
*
=[*]cos2x 为其一特解,将其代入 y″一y,得到f(x)=(y
*
)″一y
*
,即 [*] 故所求方程为 y″一y=sin
2
x.
解析
由通解形式写出特征方程,得对应齐次微分方程.由特解求出非齐次项f(x).
转载请注明原文地址:https://www.kaotiyun.com/show/idx4777K
0
考研数学三
相关试题推荐
设随机变量X的概率分布为P{X=k}=aCnkpkqn一k(k=1,2,…,n,q=1一p),则EX=________.
设总体X的密度函数为其中θ>0为未知参数,(X1,X2,…,Xn)为来自总体X的简单随机样本,求参数θ的矩估计量和极大似然估计量.
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1).使得(ξ)≥8.
差分方程yx+1—3yx=2.3x的通解为___________.
设常系数线性微分方程y’’+ay’+2y=bex的一个特解为y=(1+x+ex)ey,则常数a,b的值分别为
设矩阵有解但不唯一。(I)求a的值;(Ⅱ)求可逆矩阵P,使得P一1AP为对角矩阵;(Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
已知随机变量(X,Y)的联合密度函数为则t的二次方程t2一2Xt+Y=0有实根的概率为().
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设f(x)在[a,b]上二阶可导,且f(x)>0,下面不等式f(a)(b一a)<∫abf(x)dx<(b—a)成立的条件是()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
胸内异位组织肿瘤包括
非创伤性修复治疗的一般步骤是()
关于我国的选举制度,下列说法中不正确的是哪一项?()
在受压容器内可燃气体爆炸极限受多种因素的影响而变化,其主要因素是()。
某建筑公司根据施工需要,委托加工厂加工构件,后由于意外情况,建筑公司通知加工厂取消合同;加工厂认为自己已经完成了60%的工作,应当继续履行合同;则下列说法中正确的是()。
()是指人们从事某种活动,为某一目标付出努力的意愿。
某基金会于年末结转净资产,2014年至2015年发生下列业务:(1)2014年10月6日,收到甲公司500万元的现金捐赠,甲公司要求该基金会在2015年内使用该款项资助贫困母亲。(2)2014年11月8日,收到乙公司800万元的现金捐赠,乙公司
被誉为全球最大的“露天历史博物馆”的城市是()。
某小学修建新教学大楼,要求每名新生家长缴纳3000元集资款,并承诺学生毕业后集资款返还。该学校的做法()。
Thereisvirtuallynolimittohowonecanservecommunityinterests,fromspendingafewhoursaweekwithsomecharitableorga
最新回复
(
0
)