首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程x1+2x2+x3=a-1 ②有公共解,求a的值及所有公共解.
设线性方程组 与方程x1+2x2+x3=a-1 ②有公共解,求a的值及所有公共解.
admin
2017-06-14
60
问题
设线性方程组
与方程x
1
+2x
2
+x
3
=a-1 ②有公共解,求a的值及所有公共解.
选项
答案
将①与②联立得非齐次线性方程组: [*] 若此非齐次线性方程组有解,则①与②有公共解,且③的解即为所求全部公共解.对③的增广矩阵[*]作初等行变换得: [*] 1)当a=1时,有[*]方程组③有解,即①与②有公共解,其全部公共解即为③的通解,此时 [*] 方程组③为齐次线性方程组,其基础解系为: [*] 所以,①与②的全部公共解为 [*] k为任意常数. 2)当a=2时,有[*]方程组③有唯一解,此时 [*] 故方程组③的解为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iZu4777K
0
考研数学一
相关试题推荐
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
在区间(0,1)中随机地取两个数,则这两个数之差的绝埘值小于1/2的概率为_________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
随机试题
使用VC6打开考生文件夹下的源程序文件modi3.cpp,其中定义了用于表示日期的类Date,但类Date的定义并不完整,按要求完成下列操作,将类的定义补充完整。(1)定义私有成员变量year、month、day,分别表示年、月、日,类型为int。请在注
下列关于赠与合同的约定,说法正确的是:()
八正散与小蓟饮子组成中均含有的药物是
肌壁间肌瘤的临床表现,下列哪项是错误的
有关法与科技的说法中,下列哪一选项是错误的?()
下列免征城镇土地使用税的有()。
根据下列资料。回答下列问题。进入2012年以来,一些企业开始审慎评估之前的并购效果以及新的并购机会,海外并购开始趋于理性化、审慎化。2005年中国企业海外并购事件开始发生,2008年并购进入活跃阶段。从有关资料了解到,2005—2012年,
Likemanyofmygeneration,Ihaveaweaknessforheroworship.Atsomepoint,however,wealltoquestionourheroesandourne
CPU暂停现行程序而转去响应中断请求的过程称为______。
Weenjoyfinefoodfromthefirsttastetothelast.Similarly,goodwritingissomethingwe【C1】______withpleasure.Andgoodw
最新回复
(
0
)