首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
f(x)在(一∞,+∞)上连续,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
admin
2018-08-22
80
问题
f(x)在(一∞,+∞)上连续,
且f(x)的最小值f(x
0
)<x
0
,证明:f[f(x)]至少在两点处取得最小值.
选项
答案
令F(x)=f(x)一x
0
,则F(x)在(一∞,+∞)上连续,且 [*] 由[*]知存在a<x
0
,使得F(a)>0;存在b>x
0
,使得F(b)>0,于是由零点定理知存在x
1
∈(a,x
0
),使得F(x
1
)=0;存在x
2
∈(x
0
,b),使得F(x
2
)=0,即有x
1
<x
0
<x
2
,使得f(x
1
)=x
0
=f(x
2
),从而得f[f(x
1
)]=f(x
0
)=f[f(x
2
)],即f[f(x)]至少在两点处取得最小值.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iWj4777K
0
考研数学二
相关试题推荐
函数的图形在点(0,1)处的切线与x轴交点的坐标是()
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,……xn)T,把f(x1,x2,……xn)写成矩阵形式,并证明二次型f(x)的矩阵为A一1;
设有n元二次型f(x1,x2,……xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2,……xn)为正定二次型.
求下列不定积分:
设4元齐次方程组(I)为且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,a2=(一1,2,4,a+8)T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.如果A≠O,证明3E—A不可逆.
求曲线y=lnx的最大曲率.
计算二重积分其中积分区域D是由y轴与曲线所围成.
利用代换u=ycosx将微分方程y"cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解.
(2003年)设曲线的极坐标方程为ρ=eθ(a>0),则该曲线上相应于θ从0变到2π的一段弧与极轴所围成的图形面积为_______.
随机试题
下列关于软腭癌的放疗原则正确的是
骨折的治疗原则是
A.低钾血症B.低血糖症C.低钙血症D.低氯血症E.低镁血症久泻或佝偻病的患儿脱水及酸中毒纠正后出现惊厥,多考虑为
影响增溶的因素有
CBR试验制件时,需制三组不同的干密度试件,这三组试件每层击数分别为()
无形资产的原值()。
现代教学方法是在保留、改造和更新传统教学方法的基础上,使自身得以丰富和发展的。()
以下程序段中Do...Loop循环执行的次数为【】。程序执行完毕后,n的值为【】。PrivateSubCommand1_Click()n=5DoIfnMod2=0Then
下列关于Access表的叙述中,错误的是()。
A"talkingkitchen"teachesstudentshowtocookFrenchcuisineandspeakFrench.ResearchersatNewCastleUniversityintheUn
最新回复
(
0
)