首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
admin
2016-06-25
106
问题
如果数列{x
n
}收敛,{y
n
}发散,那么{x
n
y
n
}是否一定发散?如果{x
n
}和{y
n
}都发散,那么{x
n
y
n
}的敛散性又将如何?
选项
答案
在题设两种情况下,{x
n
y
n
}的收敛性都不能确定.现在先就{x
n
}收敛,{y
n
}发散的情况来分析.利用y
n
=[*](x
n
≠0)这个恒等式,就可得到下述结论:若{x
n
}收敛且不收敛于零,{y
n
}发散,则{x
n
y
n
}必发散.这是因为若{x
n
y
n
}收敛,且{x
n
}收敛而极限不等于零,则从上述恒等式及极限相除法则,可知{y
n
}收敛,这与假设矛盾.若[*]=0,且{y
n
}发散,则{x
n
y
n
}可能收敛,也可能发散,如: ①x
n
=[*],y
n
=n,则x
n
y
n
=1,于是{x
n
y
n
}收敛. ②x
n
=[*],y
n
=(一1)
n
n,则x
n
y
n
=(一1)
n
,于是(x
n
y
n
}发散. 现在再就{x
n
}和{y
n
}都发散的情况来分析{x
n
y
n
}的收敛性.有下面的结论:若{x
n
}和{y
n
}都发散,且两者至少有一个是无穷大,则{x
n
y
n
}必发散.这是因为如果{x
n
y
n
}收敛,而{x
n
}为无穷大,从等式y
n
=[*]便得到{y
n
}收敛于零,这与假设矛盾. 若{x
n
}和{y
n
}都不是无穷大,且都发散,则{x
n
y
n
}可能收敛,也可能发散,如: ③x
n
=y
n
=(一1)
n
有x
n
y
n
=1,于是{x
n
y
n
}收敛. ④x
n
=(一1)
n
,y
n
=(一1)
n
,有x
n
y
n
=(一1)
n
一1,于是{x
n
y
n
}发散.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/uEt4777K
0
考研数学二
相关试题推荐
设f(u)连续,Ω是由0≤z≤a,x2+y2≤t2围成的空间区域,若F(t)=[z2+f(x2+y2)]dv,试求F’(t).
令f(x)=x-[x],求极限
设f(x)在[0,+∞)上连续、非负,且以T为周期,证明:
已知f(x,y)=设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=f(x,y)dxdy.
设函数f(x)二阶连续可导,f(0)=1且有f′(x)+3∫0xf′(t)dt+2x∫01f(tx)dt+e-x=0.求f(x).
设{un},{cn}为正项数列,证明:(1)若对一切正整数n满足cnun-cn+1un+1≤0,且也发散;(2)若对一切正整数n满足cn(un/un+1)-cn+1≥a(a>0),且也收敛.
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判定它是否为极值点.
记un=∫01∣lnt∣[ln(1+t)]ndt(n=1,2,..,)求极限.
证明数列…的极限存在,并求该极限。
设T=cosnθ,θ=arccosx,求.
随机试题
如何利用学习动机与学习效果互动关系来培养学习需要?
可杀灭结核分枝杆菌的条件是()。
癌症三阶梯止痛疗法将癌症疼痛程度分为
具有行气止痛、温肾散寒作用的药物是具有行气止痛、杀虫疗癣作用的药物是
设备购置费组成为()。
Thevoyagechartermeansthatthevesselisputatthedisposalofthechartererforacertainperiodemploymentwithoutanycr
A、 B、 C、 D、 A两组图形中相应的图形内部阴影图案和方向一致。
以下关于虚拟局域网的描述中,哪个是错误的()。
下列关于奔腾芯片技术的叙述中,正确的是______。
Peoplewholiveinheavilyindustrializedareasdonotgetasmuchsunlightastheyshould.Dust【1】overacityataltitudes(海拔)
最新回复
(
0
)