首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k2[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k2[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
admin
2021-01-19
100
问题
设四元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为k
2
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
选项
答案
在方程组(Ⅱ)的解集合中寻找满足方程组(I)的解向量,为此将方程组(Ⅱ)的通解代入方程组(I)求之.另一种思路是求方程组(I)与(Ⅱ)的公共解,即求它们解集的交集,为此令两通解相等,转化为四个任意常数是否有公共非零解. (1)将方程组(I)的系数矩阵化为含最高阶单位矩阵的矩阵,得到 [*] 故方程组(I)的一个基础解系含4一秩(A)=4—2=2个解向量,其基础解系可取为 α
1
=[0,0,1,0]
T
, α
2
=[一1,1,0,1]
T
. (2) 将方程组(Ⅱ)的通解代入方程组(Ⅰ),得到[*]解得 k
1
=一k
2
.当k
1
=一k
2
≠0时,则方程组(Ⅱ)的解为k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[0,一1,一1,0]
T
+k
2
[-l,2,2,1]
T
=k
2
[-1,l,1,1]
T
, 满足方程组(I),故方程组(I)和(Ⅱ)有非零公共解,所有的非零公共解即方程组(Ⅱ)的解集合中满足方程组(I)的解向量为 k[一1,l,1,1]
T
(k是非零的任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iV84777K
0
考研数学二
相关试题推荐
已知曲线L的方程367(1)讨论L的凹凸性;(2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
在下列微分方程中,以y=(c1+χ)e-χ+c2e2χ(c1,c2是任意常数)为通解的是()
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
数列极限I=n2[arctan(n+1)—arctann]=___________.
已知3阶矩阵曰为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(2)记上题中的实根为xn,证明xn存在,并求此极限。[img][/img]
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
随机试题
Thispartistotestyourabilityinpracticalwriting.Nowyouarerequiredtowriteacompositiononthetopic"IstheSpirit
以下红细胞破坏增加造成溶血的直接证据是
关于哪个器官在急性风湿热时不受累及
气管前间隙内有
下列具有化瘀止血作用的药物是
函数y=x3一6x上切线平行于X轴的点是()。
根据《水工建筑物地下开挖工程施工规范》SL387—2007,下列关于水利水电工程土石方开挖施工的说法错误的是()。
赵某投资开办了一家餐饮服务企业(个人独资企业),其自行核算的2013年度销售收入为1000000元,各项支出合计为800000元,应纳税所得额为200000元。2014年3月,经会计师事务所审计,发现有以下几项支出未按税法规定处理:(1)王某的工
企业购置并实际使用法律规定的环境保护、节能节水、安全生产等专用设备的,可以享受所得税税收优惠。对此,下列说法错误的是()。
贮藏手段
最新回复
(
0
)