首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx的秩为2,且矩阵A满足A2+A=0,则与A相似的矩阵是
设二次型f(x1,x2,x3)=xTAx的秩为2,且矩阵A满足A2+A=0,则与A相似的矩阵是
admin
2016-01-23
64
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax的秩为2,且矩阵A满足A
2
+A=0,则与A相似的矩阵是
选项
A、
B、
C、
D、
答案
C
解析
本题求A的相似矩阵.首先要清楚二次型的矩阵是实对称矩阵,而实对称矩阵必可相似对角化,且与其特征值为主对角线上元素的对角矩阵相似;另外要清楚可对角化的矩阵的秩等于其非零特征值的个数(重根计重数),那么问题便转化为求矩阵A的特征值上来了,这是求抽象矩阵的特征值问题——见到n阶矩阵A的多项式方程f(A)=0,就知A的特征值满足方程f(λ)=0.
解:设λ是矩阵A的任意一个特征值,α是相应的特征向量,即Aα=λα.用α右乘题设等式条件,得 A
2
α+Aα=0, 即有(λ
2
+λ)α=0.因口≠0,故有λ
2
+λ=0,从而λ=0或λ=-1.又由矩阵A的秩为2可知,矩阵A的特征值为0,-1,-1,实对称矩阵A必与以它的特征值0,-1,-1为主对角线元素的对角矩阵相似.
注:实对称矩阵与以其特征值为主对角线元素的对角矩阵也是合同的.
转载请注明原文地址:https://www.kaotiyun.com/show/iRw4777K
0
考研数学一
相关试题推荐
设B≠0为三阶矩阵,且矩阵B的每个列向量为方程组的解.则k=________,|B|________.
设A为n阶矩阵,且Ak=0,求(E-A)-1.
设四阶矩阵B满足BA-1-2AB+E,且A=,求矩阵B.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+(1/a)ααT,且B为A的逆矩阵,则a=________.
x=ψ(y)是y=f(x)的反函数,f(x)可导,且f’(x)=,f(0)=3,求ψ"(3).
设函数f(x)二阶连续可导且满足关系f"(x)+f’2(x)=x,且f’(0)=0,则()。
设函数f(x)∈c[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值。
设函数z=f(u),方程u=ψ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),ψ(u)可微,P(t),ψ’(u)连续,且ψ’(u)≠1,求.
随机试题
电能的质量指标有()。
什么是回火?有什么作用?
某公司计划引入一种新产品。市场营销经理预测销售单价为500美元。单位变动成本为100美元。另外,有关的固定间接生产成本为110000美元,固定营业成本为150000美元。为达到盈亏平衡点,公司必须销售多少单位的产品()
简述股神经的分布。
对明确NSCLC分期意义不大的是()。
对乙酰氨基酚不用于治疗
下列各项中,属于年金形式的项目有()。
下列关于民事诉讼回避制度的说法正确的是()。
A.tendtoB.consideredC.ariseD.thinkofPhrases:A.itmaybe【T13】______foolishB.misunderstandings【T14】______betweenpe
近代历史上,中国不败而败的对外战争是
最新回复
(
0
)