首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 曲线y=x2与曲线y=alnx(a≠0)相切,则a=( ).
[2010年] 曲线y=x2与曲线y=alnx(a≠0)相切,则a=( ).
admin
2019-04-05
93
问题
[2010年] 曲线y=x
2
与曲线y=alnx(a≠0)相切,则a=( ).
选项
A、4e
B、3e
C、2e
D、e
答案
C
解析
两曲线相切,在切点处导数相等,函数值相等,由此可求出a.
解一 设切点为(x
0
,y
0
),则在切点处两曲线的纵坐标相等,得到y
0
=x
0
2
=a lnx
0
,即
x
0
=e
x
0
2
/a
.由在切点处两曲线的斜率相等,得到
y′∣
x=x
0
=2x∣
x=x
0
=2x
0
=(a lnx)′∣
x=x
0
=a/x
0
, 即 a=2x
0
2
, 亦即 x
0
2
=a/2.
将其代入x
0
=e
x
0
2
/a
,有x
0
=e
a/2a
=e
1/2
,则a=2x
0
2
=2(e
1/2
)
2
=2e.仅(C)入选.
解二 本例也可不必求出切点的纵坐标.由在切点处的斜率相等,得到x
0
2
=a/2.由在切点处的纵坐标相等,有x
2
=alnx,于是
故a/2=e,所以a=2e.仅(C)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/iPV4777K
0
考研数学二
相关试题推荐
已知向量α=(1,k,1)T是矩阵的逆矩阵A-1的特征向量,试求常数k的值.
求常数a,b使得f(x)=在x=0处可导.
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
设y=f(x)在(-1,1)内具有二阶连续导数且f〞(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使下式成立f(x)=f(0)+xfˊ[θ(x)x]
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个
求由圆x2+y2=2y与抛物线y=x2所围成的平面图形的面积.
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数.(Ⅱ)求f(x)的值域.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
[2008年]设n元线性方程组AX=b,其中证明行列式∣A∣=(n+1)an
随机试题
如果当前资本市场弱式有效,下列说法正确的是()。
Scientistshavebeenstrugglingtofindoutthereasonbehindblushing(脸红).Whywouldhumansevolve(进化)a【41】thatputsusat
Beck三联征的内容为以下哪些
本票在发票时有三个当事人,即出票人、付款人和收款人。()
经济单位或个人自己承担全部风险成本的一种风险管理方法是()。
旅行社可依法将旅游业务委托给其他旅行社,接受委托的旅行社由于重大过失造成旅游者合法权益损害的,应当承担连带责任。()
下列权利中,只能由自然人享有的是()。
下列选项中,公民和法人都可以享有的民事权利有()。
函数项级数的收敛域为()
ForthepeoplewhohavenevertraveledacrosstheAtlanticthevoyageisafantasy.Butforthepeoplewhocrossitfrequentlyo
最新回复
(
0
)