首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 曲线y=x2与曲线y=alnx(a≠0)相切,则a=( ).
[2010年] 曲线y=x2与曲线y=alnx(a≠0)相切,则a=( ).
admin
2019-04-05
120
问题
[2010年] 曲线y=x
2
与曲线y=alnx(a≠0)相切,则a=( ).
选项
A、4e
B、3e
C、2e
D、e
答案
C
解析
两曲线相切,在切点处导数相等,函数值相等,由此可求出a.
解一 设切点为(x
0
,y
0
),则在切点处两曲线的纵坐标相等,得到y
0
=x
0
2
=a lnx
0
,即
x
0
=e
x
0
2
/a
.由在切点处两曲线的斜率相等,得到
y′∣
x=x
0
=2x∣
x=x
0
=2x
0
=(a lnx)′∣
x=x
0
=a/x
0
, 即 a=2x
0
2
, 亦即 x
0
2
=a/2.
将其代入x
0
=e
x
0
2
/a
,有x
0
=e
a/2a
=e
1/2
,则a=2x
0
2
=2(e
1/2
)
2
=2e.仅(C)入选.
解二 本例也可不必求出切点的纵坐标.由在切点处的斜率相等,得到x
0
2
=a/2.由在切点处的纵坐标相等,有x
2
=alnx,于是
故a/2=e,所以a=2e.仅(C)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/iPV4777K
0
考研数学二
相关试题推荐
设A,B是n阶方阵,B及E+AB可逆,证明:E+BA也可逆,并求(E+BA)-1.
设f(x)在[0,+∞)连续,=A≠0,证明:∫01f(nx)dx=A.
设一锥形贮水池,深15m,口径20m,盛满水,今以吸筒将水吸尽,问作多少功?
(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,J6『可唯一表示为α1,α2,α3,α4的线性组合?
此题为用导数定义去求极限,关键在于把此极限构造为广义化的导数的定义式.[*]=(x10)’|x=2+(x10)|x=2=2×10×29=10×210.
抛物线y2=2x与直线y=x一4所围成的图形的面积为()
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
[2009年]设y=y(x)是由方程xy+ey=x+1确定的隐函数,则=_________.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
[2008年]设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则().
随机试题
甲因打工在外留住3年,因此将其宅基地上兴建的3间房屋交给其朋友乙打理。在甲外出期间,乙在甲已有3间房屋基础上加盖1间房屋作为其子丙的婚房。甲回来后,对加盖1间房屋的归属发生争执,认为房屋都应归自己。该加盖的1间房屋的所有权属于()。
A.心房扑动B.心房颤动C.阵发性室性心动过速D.阵发性室上性心动过速E.窦性心动过速心律完全不整,心音强弱不等,脉短绌的是
与胃痛关系密切的脏腑是
男婴,30周宫内妊娠,顺产,体重2.2kg,唇周发绀,呼吸急促,此时应给予
女,33岁,自述记不清末次月经,今日娩出一女婴,身长40cm,体重1700g。指(趾)甲未达指(趾)端。估计孕周可能性最大为
男性,45岁。因胃癌行胃大部分切除术后13天,痊愈出院。正确的出院指导是()。
未成年人保护工作应遵循()与保护相结合的原则。
设xy=xf(z)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是x,y的函数.证明:
软件开发的瀑布模型将软件的生存周期分为()。
如需要向一个二进制文件尾部添加数据,则该文件的打开方式为()。
最新回复
(
0
)