首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。 试证:这三条直线交于一点的充分必要条件为a+b+c=0。
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。 试证:这三条直线交于一点的充分必要条件为a+b+c=0。
admin
2019-08-01
71
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,l
2
:bx+2cy+3a=0,l
3
:cx+2ay+3b=0。
试证:这三条直线交于一点的充分必要条件为a+b+c=0。
选项
答案
必要性。 设三条直线l
1
,l
2
,l
3
交于一点,则线性方程组 [*] 有唯一解,所以系数矩阵[*]=0。 又[*]=6(a+b+c)(a
2
+b
2
+c
2
一ab一ac—bc)=3(a+b+c)[(a一b)
2
+(b一c)
2
+(c一a)
2
], 而根据题设(a一b)
2
+(b一c)
2
+(c一a)
2
≠0,故a+b+c=0。 充分性:由a+b+c=0,则从必要性的证明可知,[*]<3。 由于 [*]=2(ac—b
2
)=一2[a(a+b)+b
2
] =一2[(a+[*]b)
2
+[*]b
2
]≠0, 故r(A)=2。于是,r(A)=[*]=2。 因此方程组(*)有唯一解,即三直线l
1
,l
2
,l
3
交于一点。
解析
三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2。
转载请注明原文地址:https://www.kaotiyun.com/show/iPN4777K
0
考研数学二
相关试题推荐
∫01
设0<a<b,证明:
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数.求φ’’(y).
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设α>0,β>0为任意正数,当x→+∞时将无穷小量:,e-x按从低阶到高阶的顺序排列.
设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则
有两根长各为l,质量各为M的均匀细杆,位于同一条直线上,相距为a,求两杆间的引力.
计算下列不定积分:
设a>0为常数,求积分I=xy2dσ,其中D:x2+y2≤ax.
(2004年试题,一)设则f(x)的间断点为x=_________.
随机试题
联轴器装配的主要技术要求是应保证两轴的( )要求。
关于骨软骨瘤的叙述错误的是
下列说法错误的是()。
《建筑法》第7条规定:建设单位应当按照国家有关规定向工程所在地县级以上人民政府建设行政主管部门申请领取施工许可证。但是,()除外。
《工程建设项目施工招标投标办法》规定,资格审查应主要审查潜在投标人或者投标人的符合条件有()。
该项成套设备投资方案投资后第一年和第五年产生的年现金净流量分别为()万元。该项成套设备投资方案的投资回收期为()年。
下列哪一选项的主要目标是“通过传授体育的知识、技术和技能,以达到增强体质的目的”?()
蓝眼冯骥才①古玩行中有对天敌,就是造假画的和看假画的。造假画的,费尽心机,用尽绝招,为的是骗过看假画的那双又尖又刁的眼;看假画的,却凭这双眼识破天机,看破诡计,捏着这
WhendopeopleusuallywearT-shirts?
Hello,everyone.Itisagreatpleasuretohaveyouasassistantstohelp【B1】______theparty.Iamsendingaroundaformforyou
最新回复
(
0
)