首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a和b,使得函数f(x)=,处处可导.
确定常数a和b,使得函数f(x)=,处处可导.
admin
2018-11-21
70
问题
确定常数a和b,使得函数f(x)=
,处处可导.
选项
答案
由f(x)在x=0处可导,得f(x)在x=0处连续.由表达式知,f(x)在x=0右连续.于是,f(x)在x=0连续[*](sinx+2ae
x
)=2a=f(0)→2a=一2b,即a+b=0. 又f(x)在x=0可导←→f’
+
(0)=f’
—
(0).在a+b=0条件下,f(x)可改写成 [*] 于是 f’
+
(0)=[9arctanx+2b(x—1)
3
]’|
x=0
=[[*]+6b(x—1)
2
]|
x=0
=9+6b, f’
—
(0)=(sinx+2ae
x
)’|
x=0
=1+2a. 因此f(x)在x=0可导[*] 故仅当a=1,b=一1时f(x)处处可导.
解析
这是分段函数,当x>0与x<0时分别与某初等函数相同,是可导的,关键是确定a和b,使得f(x)在x=0处可导.对这类问题是根据:①函数在某点可导则在该点连续;②函数在某些点处可导,则在该点处左、右导数相等这两个性质,建立两个待定常数间的两个关系式,然后解出来.
转载请注明原文地址:https://www.kaotiyun.com/show/hpg4777K
0
考研数学一
相关试题推荐
(1)证明曲线积分在曲线L不经过x轴的情况下,积分与路径无关;(2)如果曲线L的两端点为A(π,1)及B(π,2),计算积分的值.
已知幂级数在x=1处条件收敛,则幂级数的收敛半径为_________。
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
求f(x,y)=的极值。
半圆形闸门半径为R米,将其垂直放入水中,且直径与水面齐平,设水的比重ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P=()
设对于半空间x>0内任意的光滑有向封闭曲面∑,都有xf(x)dydz-xyf(x)dzdx-e2xzdxdy=0,其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)。
计算累次积分
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
计算其中C为从点A(一a,0)到点B(a,0)的上半椭圆(y≥0).
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
若问小明“为什么偷东西是不对的?”他的回答是“被抓住了会挨打”。据此可以判断小明的道德认知发展处于()。
下列关于幼儿期的保健要点,错误的是
下面是一份土地估价技术报告的总述部分(标注“略”的为正常内容)。请阅读后回答相关问题。一、估价项目名称××上市公司股权转让所涉及的土地使用权价格评估。二、委托估价方(略)三、受托估价方(略)四、估价目的
挖土(石)作业应根据挖土层厚度、土的坚硬程度和运距等条件确定。常用的挖土机械有()。
建筑外保温材料的燃烧性能()。
A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和
利用第二类换元积分法求解下列不定积分.
网桥运行在______。
下列叙述中正确的是()。
A、Theyarechangedtomakethesitemoreinteresting.B、Theyareexpandedtolimittheamountofconstruction.C、Theyareintegr
最新回复
(
0
)