首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,A—E都是n阶实对称正定矩阵,证明E—A-1是正定矩阵.
已知A,A—E都是n阶实对称正定矩阵,证明E—A-1是正定矩阵.
admin
2016-10-26
58
问题
已知A,A—E都是n阶实对称正定矩阵,证明E—A
-1
是正定矩阵.
选项
答案
(特征值法) 由(E一A
-1
)
T
=E
T
一(A
-1
)
T
=E一(A
T
)
-1
=E—A
-1
知,E—A
-1
是对称矩阵.设λ
1
,λ
2
,…,λ
n
是A的特征值,则A—E与E—A
-1
的特征值分别是λ
1
一1,λ
2
—1,…,λ
n
一1与1一[*].由于A—E正定,其特征值λ
i
一1全大于0,那么[*]<1,从而E一A
-1
的特征值全大于0,即E一A
-1
是正定矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hhu4777K
0
考研数学一
相关试题推荐
-10
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
(1)设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);(2)设f(x)=xe-x,求f(n)(x).
因为积分区域关于直线y=x对称,[*]
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>O)下的最大值是_______.
设L为圆周x2+y2=4正向一周,求
设f(x)在[a,b]可积,求证:Ф(x)=f(u)du在[a,b]上连续,其中x0∈[a,b].
随机试题
依法不负刑事责任的精神病人的强制医疗程序是一种特别程序。关于其特别之处,下列哪一说法是正确的?()
女性,32岁,半年前在工作中发生过一次失误受到领导点名批评,渐出现敏感多疑,认为公司老板是黑社会的,要整自己、害自己,认为自己的想法周围人能知道,恐惧害怕,不敢上班,找公安局报案,伴失眠等。该患者的诊断很可能()
患者,女,40岁。因驾车发生交通事故后昏迷,瞳孔大小不等,血压60/40mmHg(8/5.3kPa),脉搏130次/分,呼吸30次/分且费力、不规则。护理措施错误的是
基础状态下,要求周围环境温度为
下列关于民事权利的说法正确的是()。
财政政策是指()。
PolicemenwerecalledbyashopinSouthlandearlyonChristmasmorning.Whenthey【C1】______theyfoundtwoburglars(偷盗者)werekep
小王开车上班需经过4个交通路口,假设经过每个路口遇到红灯的概率分别为0.1,0.2,0.25,0.4,则他上班经过4个路口至少有一处遇到绿灯的概率是()。
2003年世界钢材消耗量为多少亿吨?()2003年,按当时美元与人民币的银行汇率100:849计,我国消耗的电力所产生经济效益为多少亿美元?()
在我国,( )罪犯不适用死刑。
最新回复
(
0
)