首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的秩为2,a1a2a3是非齐次线性方程组AX=b的三个解,且2a2一a1=(一2,一1,2)T,a1+2a2一2a3=(2,一1,4)T,则方程组AX=b的通解为( )•
设三阶矩阵A的秩为2,a1a2a3是非齐次线性方程组AX=b的三个解,且2a2一a1=(一2,一1,2)T,a1+2a2一2a3=(2,一1,4)T,则方程组AX=b的通解为( )•
admin
2021-12-09
139
问题
设三阶矩阵A的秩为2,a
1
a
2
a
3
是非齐次线性方程组AX=b的三个解,且2a
2
一a
1
=(一2,一1,2)
T
,a
1
+2a
2
一2a
3
=(2,一1,4)
T
,则方程组AX=b的通解为( )•
选项
A、X=(一2,一1,2)
T
+k(2,0,1)
T
B、X=(2,一1,4)
T
+k(0,一2,6)
T
C、X=(2,0,1)
T
+k(一2,一1,2)
T
D、X=(一2,一1,2)
T
+k(0,一2,6)
T
答案
A
解析
∵(2a
2
一a
1
)一(a
1
+2a
2
一2a
3
)=2(a
3
一a
1
)=(一4,0,一2)
T
∴a
1
一a
3
=(2,0,1)
T
∵a
1
,a
3
是AX=b的解.
∴a
1
一a
3
是AX=0的解.
由三阶矩阵A的秩为2知方程组AX=0的基础解系只含一个向量,所以AX=0通解为k(2,0,1)
T
.
又∵A(2a
2
一a
1
)=2Aa
2
一Aa
1
=2b一b=b
∴2a
2
一a
1
是AX=b的解.故AX=b的通解为A.
转载请注明原文地址:https://www.kaotiyun.com/show/gsR4777K
0
考研数学三
相关试题推荐
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
n阶矩阵A具有n个线性无关的特征向量是A与对角矩阵相似的()
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
某五元齐次线性方程组的系数矩阵经初等变换化为则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④E一A。α肯定是其特征向量的矩阵个数为()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设A是n阶实对称矩阵,将A的第i列和第j列对换得到B,再将B的第i行和第j行对换得到C,则A与C()
已知A是三阶实对称矩阵且不可逆,又知Aα=3α,Aβ=β,其中α=(1,2,3)T,β=(5,1,t)T,则下列命题正确的是().①A必可相似对角化②必有t=一1③γ=(1,16,一11)T必是A的特征向量④
下列矩阵中,正定矩阵是()
随机试题
关于企业防毒体系构建的说法,错误的是______
A.缺氧B.二氧化碳潴留C.两者皆有D.两者皆无肺性脑病的主要原因是
1882年Halsted首创了乳腺癌根治术,建立了肿瘤外科治疗的基本原则
一位成年男性病人因胆囊结石、胆囊炎,行腹腔镜胆囊切除术,术后恢复正常饮食。术后第4天,患者突然出现全腹疼痛、恶心、低热。白细胞数升高。X线腹平片显示肠梗阻征象。
肾上腺素0.5mg,H,st是
有限的器官供体与大量需要移植器官的患者之间存在供不应求的矛盾。因此,对有限器官供体的分配存在着尖锐的伦理问题,在下列争论的问题中哪项是绝大多数国家明确反对的
每当学生请教课堂上没听懂的问题时,李老师总是批评学生没有用心听讲,而雷老师则会耐心地给学生解答。两位教师的不同做法反映了()。
以“快乐的端午节”为活动主题,设计一个教育活动的策划,要求有目标,有准备过程。
房屋:屋顶
计算机网络的主要目的是实现______。
最新回复
(
0
)