首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是( )
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是( )
admin
2019-03-14
92
问题
设线性无关的函数y
1
,y
2
,y
3
都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C
1
,C
2
是任意常数,则该非齐次方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
。
B、C
1
y
1
+C
2
y
2
一(C
1
+C
2
)y
3
。
C、C
1
y
1
+C
2
y
2
一(1一C
1
一C
2
)y
3
。
D、C
1
y
1
+C
2
y
2
+(1一C
1
—C
2
)y
3
。
答案
D
解析
因为y
1
,y
2
,y
3
是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)线性无关的解,所以(y
1
一 y
3
),(y
2
—y
3
)都是齐次线性方程y’’+p(x)y’+q(x)y=0的解,且(y
1
一y
3
)与(y
2
一y
3
)线性无关,
因此该齐次线性方程的通解为y=C
1
(y
1
一y
3
)+C
2
(y
2
一y
3
)。比较四个选项,且由线性微分方程解的结构性质可知,故选D。
转载请注明原文地址:https://www.kaotiyun.com/show/gKj4777K
0
考研数学二
相关试题推荐
已知函数f(χ,y,z)=χ2y2z及方程χ+y+z-3+e-3=e-(χ+y+z),(*)(Ⅰ)如果χ=χ(y,χ)是由方程(*)确定的隐函数满足χ(1,1)=1,又u=f(y,z),y,z),求(Ⅱ)如果z=z(χ
证明函数恒等式
曲线y=lnx上与直线x+y=1垂直的切线方程为____________。
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=_____________。
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设矩阵A与相似,则r(A)+r(A一2E)=___________。
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
设a(x)=∫05xsint/tdt,β(x)=∫0sinx(1+t)1/tdt,则当x→0时,α(x)是β(x)的()
随机试题
试述华盛顿会议召开的背景、主要内容及后果。(浙江大学2000年世界现当代史真题)
Tomowns______largercollectionof______booksthananyotherstudentinourclass.
A.双肾B超B.双肾CT影C.静脉肾盂造D.肾动脉造影E.肾活检肾病综合征的主要辅助检查项目应是
下列说法错误的是()。
银团贷款中,受邀参加银团,并按照协商确定的份额提供贷款的普通角色的银行是()。
我国《公司法》规定,设立股份有限公司,其发起人必须()以上在中国有住所。
某投资方案,当折现率为10%时,其净现值40万元,当折现率为12%B寸,其净现值为一15万元。该方案的内含报酬率为()。
美国心理学家马斯洛认为()是属于缺失性需要的一种。
当一个人数学学得好时,往往别人也会认为他物理、化学也学得很好。这种现象被称()。
科学家在实验室对老鼠进行了实验,使老鼠饮食所含的热量比通常少30%~50%,但维持生命的蛋白质、脂肪、维生素和无机盐不减少。结果,被实验的老鼠比同岁正常饮食的老鼠重量轻得多,寿命也都延长了。可见,限制热量是延缓衰老的主要方法之一。研究还表明,限制热量不必从
最新回复
(
0
)