首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是( )
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是( )
admin
2019-03-14
71
问题
设线性无关的函数y
1
,y
2
,y
3
都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C
1
,C
2
是任意常数,则该非齐次方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
。
B、C
1
y
1
+C
2
y
2
一(C
1
+C
2
)y
3
。
C、C
1
y
1
+C
2
y
2
一(1一C
1
一C
2
)y
3
。
D、C
1
y
1
+C
2
y
2
+(1一C
1
—C
2
)y
3
。
答案
D
解析
因为y
1
,y
2
,y
3
是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)线性无关的解,所以(y
1
一 y
3
),(y
2
—y
3
)都是齐次线性方程y’’+p(x)y’+q(x)y=0的解,且(y
1
一y
3
)与(y
2
一y
3
)线性无关,
因此该齐次线性方程的通解为y=C
1
(y
1
一y
3
)+C
2
(y
2
一y
3
)。比较四个选项,且由线性微分方程解的结构性质可知,故选D。
转载请注明原文地址:https://www.kaotiyun.com/show/gKj4777K
0
考研数学二
相关试题推荐
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设y=y(x)是由方程确定的隐函数,则y’’=___________。
已知函数f(x)连续,且则f(0)=____________。
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,aα2,…,αs,β中任意s个向量线性无关.
y=2x的麦克劳林公式中xn项的系数是________.
设函数fi(x)(i=1,2)具有二阶连续导数,且fi"(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)
设t>0,则当t→0时,f(t)=[1-cos(x2+y2)]dxdy是t的n阶无穷小量,则n为().
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
随机试题
诊断可能是首选治疗措施是
A.抗疟药B.驱虫和泻下药C.滋补药D.安眠药E.对胃肠刺激性较大的药宜空腹服用的药物是()。
境内上市外资股采取记名股票形式,以人民币标明面值,以外币认购、买卖。()
某生近期情绪低落、思维迟缓、活动减少,容易自我否定甚至产生自杀念头,其主要问题是()。
2013年5月,微博上________着一份百字令微情书。“不尽红笺相思意”,一时感动无数网友争相效仿。整篇文字呈菱形排列,词句婉约,文笔_______,从中可以看到作者表达爱情的________。依次填入划横线部分最恰当的一项是()。
Whilethemissionofpublicschoolshasexpandedbeyondeducationtoincludesocialsupportandextra-curricularactivities,the
Atthemeetingbothsidesexchangedtheirviewsonawidescopeoftopicstheywereinterestedin.
HenryKissingerwasborninasmalltown,located【C1】______thesouthGermanprovinceofFranconia,onMay27,1923.Hisfatherwa
Writeanessayofnolessthan200wordsonthetopicgivenbelow.UsetheproperspaceonyourANSWERSHEETII.
Imust________yourfarewellrightnow,butonsomefutureoccasion,Ihopetoseeyouagain.
最新回复
(
0
)