首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
admin
2017-08-31
87
问题
设n阶矩阵A满足(aE一A)(bE一A)=O且a≠b,证明:A可对角化.
选项
答案
由(aE—A)(bE一A)=O,得|aE—A|.|bE一A|=0,则|aE—A|=0或者 |bE—A|=0.又由(aE—A)(bE—A)=O,得r(aE-A)+r(bE—A)≤n. 同时r(aE—A)+r(bE—A)≥r[(aE—A)一(bE—A)]=r[(a一b)E]=n. 所以r(aE—A)+r(bE—A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE—A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE一A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|6E—A|=0,则a,b都是矩阵A的特征值. 方程组(aE—A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE—A)X=0的基础解系含有n一r(bE一A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE-A)个. 因为n一r(aE—A)+n-r(bE—A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gFr4777K
0
考研数学一
相关试题推荐
设f(x)在x=0处满足fˊ(0)=f〞(0)=…=f(n)(0)=0,f(n+1)(0)>0,则()
(2005年试题,8)设F(x)是连续函数f(x)的一个原函数,“”表示“M的充分必要条件是N”,则必有().
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的联合密度函数为fY|X(y|x)=(Ⅰ)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
求幂级数的收敛域及和函数.
设有命题以上四个命题中正确的个数为()
随机试题
边缘性龈炎主要表现为
对手术耐受力最差的心脏病类型是
患者,男,65岁,肝硬化门脉高压。住院期间出现大量腹腔积液,神志模糊,贫血、巩膜轻度黄染。该患者宜采取的体位是
建筑物的耐久等级为一级耐久年限的建筑物是()。
下列有关市净率在股票价值估计上的应用,说法有误的有()。
下列关于流行性脑脊髓膜炎的临床表现,不正确的是
GregFocker,playedbyBenStiller,representsagenerationofAmericankids(1)_____inthe1980sonthephilosophythatanyac
下列数据结构不属于线性表的是()。
(1)Hippiesweremembersofayouthmovementofthe1960’sand1970’sthatstartedintheUnitedStatesandspreadtoCanada,Gre
Everycamerawesellcomeswithatwo-year______,soyoucanbuyanyoneyoulikeatease.
最新回复
(
0
)